Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Mater ; 36(28): e2403965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655917

RESUMO

State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.

2.
Bioorg Med Chem ; 90: 117350, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37270903

RESUMO

To develop matrix metalloproteinase inhibitors (MMPIs) for both therapy and medicinal imaging by fluorescence-based techniques or positron-emission tomography (PET), a small library of eighteen N-substituted N-arylsulfonamido d-valines were synthesized and their potency to inhibit two gelatinases (MMP-2, and MMP-9), two collagenases (MMP-8, and MMP-13) and macrophage elastase (MMP-12) was determined in a Structure-Activity-Relation study with ({4-[3-(5-methylthiophen-2-yl)-1,2,4-oxadiazol-5-yl]phenyl}sulfonyl)-d-valine (1) as a lead. All compounds were shown to be more potent MMP-2/-9 inhibitors (nanomolar range) compared to other tested MMPs. This is a remarkable result considering that a carboxylic acid group is the zinc binding moiety. The compound with a terminal fluoropropyltriazole group at the furan ring (P1' substituent) was only four times less potent in inhibiting MMP-2 activity than the lead compound 1, making this compound a promising probe for PET application (after using a prosthetic group approach to introduce fluorine-18). Compounds with a TEG spacer and a terminal azide or even a fluorescein moiety at the sulfonylamide N atom (P2' substituent) were almost as active as the lead structure 1, making the latter derivative a suitable fluorescence imaging tool.


Assuntos
Metaloproteinase 2 da Matriz , Inibidores de Metaloproteinases de Matriz , Inibidores de Metaloproteinases de Matriz/farmacologia , Relação Estrutura-Atividade , Valina , Ácidos Carboxílicos
3.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467005

RESUMO

Inhibition of the major human drug-metabolizing cytochrome P450 3A4 (CYP3A4) by pharmaceuticals and other xenobiotics could lead to toxicity, drug-drug interactions and other adverse effects, as well as pharmacoenhancement. Despite serious clinical implications, the structural basis and attributes required for the potent inhibition of CYP3A4 remain to be established. We utilized a rational inhibitor design to investigate the structure-activity relationships in the analogues of ritonavir, the most potent CYP3A4 inhibitor in clinical use. This study elucidated the optimal length of the head-group spacer using eleven (series V) analogues with the R1/R2 side-groups as phenyls or R1-phenyl/R2-indole/naphthalene in various stereo configurations. Spectral, functional and structural characterization of the inhibitory complexes showed that a one-atom head-group linker elongation, from pyridyl-ethyl to pyridyl-propyl, was beneficial and markedly improved Ks, IC50 and thermostability of CYP3A4. In contrast, a two-atom linker extension led to a multi-fold decrease in the binding and inhibitory strength, possibly due to spatial and/or conformational constraints. The lead compound, 3h, was among the best inhibitors designed so far and overall, the strongest binder (Ks and IC50 of 0.007 and 0.090 µM, respectively). 3h was the fourth structurally simpler inhibitor superior to ritonavir, which further demonstrates the power of our approach.


Assuntos
Inibidores do Citocromo P-450 CYP3A/síntese química , Citocromo P-450 CYP3A/metabolismo , Ritonavir/análogos & derivados , Sítios de Ligação , Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
4.
Bioorg Med Chem ; 28(6): 115349, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32044230

RESUMO

Identification of structural determinants required for potent inhibition of drug-metabolizing cytochrome P450 3A4 (CYP3A4) could help develop safer drugs and more effective pharmacoenhancers. We utilize a rational inhibitor design to decipher structure-activity relationships in analogues of ritonavir, a highly potent CYP3A4 inhibitor marketed as pharmacoenhancer. Analysis of compounds with the R1 side-group as phenyl or naphthalene and R2 as indole or naphthalene in different stereo configuration showed that (i) analogues with the R2-naphthalene tend to bind tighter and inhibit CYP3A4 more potently than the R2-phenyl/indole containing counterparts; (ii) stereochemistry becomes a more important contributing factor, as the bulky side-groups limit the ability to optimize protein-ligand interactions; (iii) the relationship between the R1/R2 configuration and preferential binding to CYP3A4 is complex and depends on the side-group functionality/interplay and backbone spacing; and (iv) three inhibitors, 5a-b and 7d, were superior to ritonavir (IC50 of 0.055-0.085 µM vs. 0.130 µM, respectively).


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Ritonavir/farmacologia , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Ritonavir/síntese química , Ritonavir/química , Relação Estrutura-Atividade
5.
Int J Biol Macromol ; 132: 970-977, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30965077

RESUMO

Polysaccharides are a major class of biomacromolecules. Their bioactivities depend on chemical structure, which includes monosaccharide composition, linkages below sugar residues, and solution conformation. Many researchers report that chemical modifications of polysaccharides lead to a significantly increase in the structural diversity, promoting bioactivity and even add new bioactivities, including antioxidant and anti-tumor properties as well as anticoagulant and immunoregulatory activities. This paper reviews the recent progress of chemical modification of polysaccharides, including i) the common synthetic methods of chemical modification; ii) their structural characterization; iii) their bioactivities; and iv) the structure activity relationships of these modified polysaccharides. This review also suggests future directions for researchers and new applications for chemically modified polysaccharide derivatives in the pharmaceutical and food industries.


Assuntos
Polissacarídeos/química , Polissacarídeos/síntese química , Animais , Técnicas de Química Sintética , Humanos , Polissacarídeos/farmacologia , Relação Estrutura-Atividade
6.
Eur J Med Chem ; 106: 144-56, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26544629

RESUMO

Pyridone 1 was identified from a high-throughput cell-based phenotypic screen against Mycobacterium tuberculosis (Mtb) including multi-drug resistant tuberculosis (MDR-TB) as a novel anti-TB agent and subsequently optimized series using cell-based Mtb assay. Preliminary structure activity relationship on the isobutyl group with higher cycloalkyl groups at 6-position of pyridone ring has enabled us to significant improvement of potency against Mtb. The lead compound 30j, a dimethylcyclohexyl group on the 6-position of the pyridone, displayed desirable in vitro potency against both drug sensitive and multi-drug resistant TB clinical isolates. In addition, 30j displayed favorable oral pharmacokinetic properties and demonstrated in vivo efficacy in mouse model. These results emphasize the importance of 4-hydroxy-2-pyridones as a new chemotype and further optimization of properties to treat MDR-TB.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Piridonas/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Animais , Antituberculosos/química , Antituberculosos/metabolismo , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Piridonas/química , Piridonas/metabolismo , Ratos , Relação Estrutura-Atividade
7.
J Alzheimers Dis ; 47(1): 215-29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26402770

RESUMO

Protein aggregation is a hallmark of many neurodegenerative disorders. Alzheimer's disease (AD) is directly linked to deposits of amyloid-ß (Aß) derived from the amyloid-ß protein precursor (AßPP), and multiple experimental studies have investigated the aggregation behavior of these amyloids. The present paper reports modeling of the aggregation propensities and cell toxicities of genetic variants of Aß known to increase disease risk. From correlation to experimental data, and using four distinct experimental structures to test structural sensitivity, we find that the Spatial Aggregation Propensity (SAP) formalism can describe the relative experimental aggregation propensities of Aß 42 variants (R2 = 0.49 and 0.70, p∼0.02 and 0.002, for 1IYT and 1Z0Q conformations using a probe radius of 10 Å). Our analysis finds correlation between the reduction in hydrophilic surface and experimental aggregation propensities. Finally, we show that experimental cell toxicities of Aß variants are well described by computed SAP values, suggesting direct interplay between aggregation propensity and cell toxicity and providing a step toward a first computational estimator of Aß toxicity. The present study contributes to our understanding of amyloid aggregation and suggests a method to predict aggregation propensity and toxicity of Aß variants, and potentially to reduce aggregation propensities of amyloids by molecular intervention directed toward specific conformations of the peptides.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Modelos Moleculares , Agregados Proteicos/fisiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Modelos Biológicos , Mutação/genética , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína
8.
Bioorg Med Chem ; 23(14): 3933-7, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25583099

RESUMO

N-Benzyl substitution of phenethylamine 5-HT2A receptor agonists has dramatic effects on binding affinity, receptor selectivity and agonist activity. In this paper we examine how affinity for the 5-HT2A/2C receptors are influenced by N-benzyl substitution of 4-bromo-2,5-dimethoxyphenethylamine derivatives. Special attention is given to the 2' and 3'-position of the N-benzyl as such compounds are known to be very potent. We found that substitutions in these positions are generally well tolerated. The 2'-position was further examined using a range of substituents to probe the hydrogen bonding requirements for optimal affinity and selectivity, and it was found that small changes in the ligands in this area had a profound effect on their affinities. Furthermore, two ligands that lack a 2'-benzyl substituent were also found to have high affinity contradicting previous held notions. Several high-affinity ligands were identified and assayed for functional activity at the 5-HT2A and 5-HT2C receptor, and they were generally found to be less efficacious agonists than previously reported N-benzyl phenethylamines.


Assuntos
Dimetoxifeniletilamina/análogos & derivados , Avaliação Pré-Clínica de Medicamentos/métodos , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Relação Estrutura-Atividade , Técnicas de Química Sintética , Dimetoxifeniletilamina/química , Transferência Ressonante de Energia de Fluorescência , Células HEK293/efeitos dos fármacos , Humanos , Receptor 5-HT2B de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química
9.
Biomaterials ; 34(32): 7950-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23891521

RESUMO

Atherogenesis, the uncontrolled deposition of modified lipoproteins in inflamed arteries, serves as a focal trigger of cardiovascular disease (CVD). Polymeric biomaterials have been envisioned to counteract atherogenesis based on their ability to repress scavenger mediated uptake of oxidized lipoprotein (oxLDL) in macrophages. Following the conceptualization in our laboratories of a new library of amphiphilic macromolecules (AMs), assembled from sugar backbones, aliphatic chains and poly(ethylene glycol) tails, a more rational approach is necessary to parse the diverse features such as charge, hydrophobicity, sugar composition and stereochemistry. In this study, we advance a computational biomaterials design approach to screen and elucidate anti-atherogenic biomaterials with high efficacy. AMs were quantified in terms of not only 1D (molecular formula) and 2D (molecular connectivity) descriptors, but also new 3D (molecular geometry) descriptors of AMs modeled by coarse-grained molecular dynamics (MD) followed by all-atom MD simulations. Quantitative structure-activity relationship (QSAR) models for anti-atherogenic activity were then constructed by screening a total of 1164 descriptors against the corresponding, experimentally measured potency of AM inhibition of oxLDL uptake in human monocyte-derived macrophages. Five key descriptors were identified to provide a strong linear correlation between the predicted and observed anti-atherogenic activity values, and were then used to correctly forecast the efficacy of three newly designed AMs. Thus, a new ligand-based drug design framework was successfully adapted to computationally screen and design biomaterials with cardiovascular therapeutic properties.


Assuntos
Aterosclerose/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Simulação por Computador , Desenho de Fármacos , Aterosclerose/prevenção & controle , Materiais Biocompatíveis/química , Carboidratos/química , Biologia Computacional/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Ligantes , Lipoproteínas LDL/metabolismo , Substâncias Macromoleculares/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Polietilenoglicóis , Polímeros/química , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 65: 304-14, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23727540

RESUMO

The human Ether-a-go-go-Related-Gene (hERG) potassium (K(+)) channel is liable to drug-inducing blockage that prolongs the QT interval of the cardiac action potential, triggers arrhythmia and possibly causes sudden cardiac death. Early prediction of drug liability to hERG K(+) channel is therefore highly important and preferably obligatory at earlier stages of any drug discovery process. In vitro assessment of drug binding affinity to hERG K(+) channel involves substantial expenses, time, and labor; and therefore computational models for predicting liabilities of drug candidates for hERG toxicity is of much importance. In the present study, we apply the Iterative Stochastic Elimination (ISE) algorithm to construct a large number of rule-based models (filters) and exploit their combination for developing the concept of hERG Toxicity Index (ETI). ETI estimates the molecular risk to be a blocker of hERG potassium channel. The area under the curve (AUC) of the attained model is 0.94. The averaged ETI of hERG binders, drugs from CMC, clinical-MDDR, endogenous molecules, ACD and ZINC, were found to be 9.17, 2.53, 3.3, -1.98, -2.49 and -3.86 respectively. Applying the proposed hERG Toxicity Index Model on external test set composed of more than 1300 hERG blockers picked from chEMBL shows excellent performance (Matthews Correlation Coefficient of 0.89). The proposed strategy could be implemented for the evaluation of chemicals in the hit/lead optimization stages of the drug discovery process, improve the selection of drug candidates as well as the development of safe pharmaceutical products.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Humanos , Estrutura Molecular , Bloqueadores dos Canais de Potássio/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA