Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069054

RESUMO

Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.


Assuntos
Antioxidantes , Ácido Clorogênico , Humanos , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Superóxidos , Doenças Neuroinflamatórias , Oxidases Duais , Anti-Inflamatórios/farmacologia , Polifenóis/farmacologia , Oligodendroglia
2.
Animals (Basel) ; 13(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37893943

RESUMO

Cryopreserved semen is widely used in assisted reproductive techniques. Post-thawing spermatozoa endure oxidative stress due to the high levels of reactive oxygen and nitrogen species, which are produced during the freezing/thawing process, and the depletion of antioxidants. To counteract this depletion, supplementation of sperm preparation medium with antioxidants has been widely applied. Melatonin is a hormone with diverse biological roles and a potent antioxidant, with an ameliorative effect on spermatozoa. In the present study, we assessed the effect of melatonin on thawed bovine spermatozoa during their handling. Cryopreserved bovine spermatozoa were thawed and incubated for 60 min in the presence or absence of 100 µΜ melatonin. Also, the effect of melatonin was assessed on spermatozoa further challenged by the addition of 100 µΜ hydrogen peroxide. Spermatozoa were evaluated in terms of kinematic parameters (CASA), viability (trypan blue staining) and antioxidant capacity (glutathione and NBT assay, determination of iNOS levels by Western blot analysis). In the presence of melatonin, spermatozoa presented better kinematic parameters, as the percentage of motile and rapid spermatozoa was higher in the melatonin group. They also presented higher viability and antioxidant status, as determined by the increased cellular glutathione levels and the decreased iNOS protein levels.

3.
J Biol Chem ; 299(11): 105267, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734554

RESUMO

Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.


Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais
4.
ACS Appl Mater Interfaces ; 13(31): 37102-37110, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333980

RESUMO

The exploration of highly efficient materials for the degradation of chemical warfare agents has been a longstanding task for preventing human exposure. Herein, we report a series of metal-organic frameworks (MOFs) M-TCPP-La based on metallo-tetra(4-carboxyphenyl)porphyrin and LaIII, which were applied to selectively oxidize 2-chloroethyl ethyl sulfide (CEES, a sulfur mustard simulant) as heterogeneous photocatalysts. After irradiation from a commercial blue light-emitting diode (LED), both superoxide ion and singlet oxygen were generated by M-TCPP-La and involved in selective oxidization of CEES to 2-chloroethyl ethyl sulfoxide (CEESO). Notably, a very short half lifetime (2.5 min) was achieved using Fe-TCPP-La as the photocatalyst. In comparison to currently utilizing singlet oxygen and hydrogen peroxide as oxidizing agents, this work employing both singlet oxygen and superoxide ion represents a new and effective strategy of detoxification of mustard gas.

5.
Photochem Photobiol Sci ; 20(3): 435-449, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33721281

RESUMO

Genetically encodable proteins that photosensitize the production of singlet oxygen, O2(a1Δg), will play an increasingly important role in elucidating mechanisms of cellular processes modulated by reactive oxygen species, ROS, and changes in redox balance. In the development of such tools, it is essential to characterize the oxygen-dependent photophysics of the protein-encased chromophore. Of the O2(a1Δg)-photosensitizing systems recently developed, a protein-bound derivative of Malachite Green has several desirable features: (1) it absorbs light at wavelengths longer than those typically absorbed by endogenous molecules, and (2) the chromophore becomes a viable sensitizer only when bound to the activating protein. However, we now demonstrate that the photophysics of this Malachite Green system is not simple. Our data indicate that, with an increase in the concentration of ground-state oxygen, O2(X3Σg-), the yield of O2(a1Δg) does not increase in a proportional manner. Moreover, the lifetime of O2(a1Δg) decreases as the O2(X3Σg-) concentration is increased. One mechanism that could account for our observations involves the concomitant photo-initiated formation of O2(a1Δg) and the superoxide radical anion. We propose that the superoxide ion acts as a dynamic diffusion-dependent quencher to influence the O2(a1Δg) lifetime and as a static quencher within the protein enclosure to influence the measured O2(a1Δg) yield. Thus, in the least, caution should be exercised when using this Malachite Green system to probe mechanisms of ROS-mediated processes. Our results contribute to a better understanding of the general photophysics of protein-bound O2(a1Δg) sensitizers which, in turn, facilitates the further development of these useful mechanistic tools.


Assuntos
Proteínas/química , Corantes de Rosanilina/química , Oxigênio Singlete/metabolismo , Cinética , Luz , Oxigênio/química , Fármacos Fotossensibilizantes/química , Teoria Quântica
6.
J Biol Chem ; 295(45): 15262-15279, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32859750

RESUMO

Succinate dehydrogenase (SDH) is an inner mitochondrial membrane protein complex that links the Krebs cycle to the electron transport system. It can produce significant amounts of superoxide ([Formula: see text]) and hydrogen peroxide (H2O2); however, the precise mechanisms are unknown. This fact hinders the development of next-generation antioxidant therapies targeting mitochondria. To help address this problem, we developed a computational model to analyze and identify the kinetic mechanism of [Formula: see text] and H2O2 production by SDH. Our model includes the major redox centers in the complex, namely FAD, three iron-sulfur clusters, and a transiently bound semiquinone. Oxidation state transitions involve a one- or two-electron redox reaction, each being thermodynamically constrained. Model parameters were simultaneously fit to many data sets using a variety of succinate oxidation and free radical production data. In the absence of respiratory chain inhibitors, model analysis revealed the 3Fe-4S iron-sulfur cluster as the primary [Formula: see text] source. However, when the quinone reductase site is inhibited or the quinone pool is highly reduced, [Formula: see text] is generated primarily by the FAD. In addition, H2O2 production is only significant when the enzyme is fully reduced, and fumarate is absent. Our simulations also reveal that the redox state of the quinone pool is the primary determinant of free radical production by SDH. In this study, we showed the importance of analyzing enzyme kinetics and associated side reactions in a consistent, quantitative, and biophysically detailed manner using a diverse set of experimental data to interpret and explain experimental observations from a unified perspective.


Assuntos
Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Algoritmos , Animais , Cobaias , Cinética
7.
J Biol Chem ; 295(21): 7249-7260, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32277051

RESUMO

Exposure to chronic hyperglycemia because of diabetes mellitus can lead to development and progression of diabetic kidney disease (DKD). We recently reported that reduced superoxide production is associated with mitochondrial dysfunction in the kidneys of mouse models of type 1 DKD. We also demonstrated that humans with DKD have significantly reduced levels of mitochondrion-derived metabolites in their urine. Here we examined renal superoxide production in a type 2 diabetes animal model, the db/db mouse, and the role of a mitochondrial protectant, MTP-131 (also called elamipretide, SS-31, or Bendavia) in restoring renal superoxide production and ameliorating DKD. We found that 18-week-old db/db mice have reduced renal and cardiac superoxide levels, as measured by dihydroethidium oxidation, and increased levels of albuminuria, mesangial matrix accumulation, and urinary H2O2 Administration of MTP-131 significantly inhibited increases in albuminuria, urinary H2O2, and mesangial matrix accumulation in db/db mice and fully preserved levels of renal superoxide production in these mice. MTP-131 also reduced total renal lysocardiolipin and major lysocardiolipin subspecies and preserved lysocardiolipin acyltransferase 1 expression in db/db mice. These results indicate that, in type 2 diabetes, DKD is associated with reduced renal and cardiac superoxide levels and that MTP-131 protects against DKD and preserves physiological superoxide levels, possibly by regulating cardiolipin remodeling.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Mitocôndrias , Oligopeptídeos/farmacologia , Superóxidos/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia
8.
J Biol Chem ; 295(19): 6665-6676, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32217693

RESUMO

Reactive oxygen and nitrogen species have been implicated in many biological processes and diseases, including immune responses, cardiovascular dysfunction, neurodegeneration, and cancer. These chemical species are short-lived in biological settings, and detecting them in these conditions and diseases requires the use of molecular probes that form stable, easily detectable, products. The chemical mechanisms and limitations of many of the currently used probes are not well-understood, hampering their effective applications. Boronates have emerged as a class of probes for the detection of nucleophilic two-electron oxidants. Here, we report the results of an oxygen-18-labeling MS study to identify the origin of oxygen atoms in the oxidation products of phenylboronate targeted to mitochondria. We demonstrate that boronate oxidation by hydrogen peroxide, peroxymonocarbonate, hypochlorite, or peroxynitrite involves the incorporation of oxygen atoms from these oxidants. We therefore conclude that boronates can be used as probes to track isotopically labeled oxidants. This suggests that the detection of specific products formed from these redox probes could enable precise identification of oxidants formed in biological systems. We discuss the implications of these results for understanding the mechanism of conversion of the boronate-based redox probes to oxidant-specific products.


Assuntos
Ácidos Borônicos/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Oxidantes/química , Oxidantes/metabolismo , Isótopos de Oxigênio/química , Encéfalo/metabolismo , Marcação por Isótopo
9.
J Biol Chem ; 295(2): 570-583, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806705

RESUMO

Copper (Cu)-only superoxide dismutases (SOD) represent a newly characterized class of extracellular SODs important for virulence of several fungal pathogens. Previous studies of the Cu-only enzyme SOD5 from the opportunistic fungal pathogen Candida albicans have revealed that the active-site structure and Cu binding of SOD5 strongly deviate from those of Cu/Zn-SODs in its animal hosts, making Cu-only SODs a possible target for future antifungal drug design. C. albicans also expresses a Cu-only SOD4 that is highly similar in sequence to SOD5, but is poorly characterized. Here, we compared the biochemical, biophysical, and cell biological properties of C. albicans SOD4 and SOD5. Analyzing the recombinant proteins, we found that, similar to SOD5, Cu-only SOD4 can react with superoxide at rates approaching diffusion limits. Both SODs were monomeric and they exhibited similar binding affinities for their Cu cofactor. In C. albicans cultures, SOD4 and SOD5 were predominantly cell wall proteins. Despite these similarities, the SOD4 and SOD5 genes strongly differed in transcriptional regulation. SOD5 was predominantly induced during hyphal morphogenesis, together with a fungal burst in reactive oxygen species. Conversely, SOD4 expression was specifically up-regulated by iron (Fe) starvation and controlled by the Fe-responsive transcription factor SEF1. Interestingly, Candida tropicalis and the emerging fungal pathogen Candida auris contain a single SOD5-like SOD rather than a pair, and in both fungi, this SOD was induced by Fe starvation. This unexpected link between Fe homeostasis and extracellular Cu-SODs may help many fungi adapt to Fe-limited conditions of their hosts.


Assuntos
Candida/enzimologia , Candidíase/microbiologia , Ferro/metabolismo , Superóxido Dismutase/metabolismo , Candida/metabolismo , Candida albicans/enzimologia , Candida albicans/metabolismo , Candida tropicalis/enzimologia , Candida tropicalis/metabolismo , Cobre/metabolismo , Humanos , Modelos Moleculares , Espécies Reativas de Oxigênio/metabolismo
10.
J Biol Chem ; 294(8): 2700-2713, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30593499

RESUMO

Copper-only superoxide dismutases (SODs) represent a new class of SOD enzymes that are exclusively extracellular and unique to fungi and oomycetes. These SODs are essential for virulence of fungal pathogens in pulmonary and disseminated infections, and we show here an additional role for copper-only SODs in promoting survival of fungal biofilms. The opportunistic fungal pathogen Candida albicans expresses three copper-only SODs, and deletion of one of them, SOD5, eradicated candidal biofilms on venous catheters in a rodent model. Fungal copper-only SODs harbor an irregular active site that, unlike their Cu,Zn-SOD counterparts, contains a copper co-factor unusually open to solvent and lacks zinc for stabilizing copper binding, making fungal copper-only SODs highly vulnerable to metal chelators. We found that unlike mammalian Cu,Zn-SOD1, C. albicans SOD5 indeed rapidly loses its copper to metal chelators such as EDTA, and binding constants for Cu(II) predict that copper-only SOD5 has a much lower affinity for copper than does Cu,Zn-SOD1. We screened compounds with a variety of indications and identified several metal-binding compounds, including the ionophore pyrithione zinc (PZ), that effectively inhibit C. albicans SOD5 but not mammalian Cu,Zn-SOD1. We observed that PZ both acts as an ionophore that promotes uptake of toxic metals and inhibits copper-only SODs. The pros and cons of a vulnerable active site for copper-only SODs and the possible exploitation of this vulnerability in antifungal drug design are discussed.


Assuntos
Candida albicans/enzimologia , Infecções Relacionadas a Cateter/prevenção & controle , Catéteres/microbiologia , Cobre/metabolismo , Inibidores Enzimáticos/farmacologia , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Candidemia/enzimologia , Candidemia/etiologia , Candidemia/prevenção & controle , Domínio Catalítico , Infecções Relacionadas a Cateter/enzimologia , Infecções Relacionadas a Cateter/etiologia , Catéteres/efeitos adversos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Conformação Proteica , Ratos , Zinco/farmacologia
11.
J Biol Chem ; 293(26): 10363-10380, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29739855

RESUMO

Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.


Assuntos
Mitocôndrias/metabolismo , Técnicas de Sonda Molecular , Espécies Reativas de Oxigênio/metabolismo , Aconitato Hidratase/metabolismo , Linhagem Celular , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Superóxidos/metabolismo
12.
J Biol Chem ; 293(22): 8530-8542, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661935

RESUMO

The ubiquitous cellular labile iron pool (LIP) is often associated with the production of the highly reactive hydroxyl radical, which forms through a redox reaction with hydrogen peroxide. Peroxynitrite is a biologically relevant peroxide produced by the recombination of nitric oxide and superoxide. It is a strong oxidant that may be involved in multiple pathological conditions, but whether and how it interacts with the LIP are unclear. Here, using fluorescence spectroscopy, we investigated the interaction between the LIP and peroxynitrite by monitoring peroxynitrite-dependent accumulation of nitrosated and oxidized fluorescent intracellular indicators. We found that, in murine macrophages, removal of the LIP with membrane-permeable iron chelators sustainably accelerates the peroxynitrite-dependent oxidation and nitrosation of these indicators. These observations could not be reproduced in cell-free assays, indicating that the chelator-enhancing effect on peroxynitrite-dependent modifications of the indicators depended on cell constituents, presumably including LIP, that react with these chelators. Moreover, neither free nor ferrous-complexed chelators stimulated intracellular or extracellular oxidative and nitrosative chemistries. On the basis of these results, LIP appears to be a relevant and competitive cellular target of peroxynitrite or its derived oxidants, and thereby it reduces oxidative processes, an observation that may change the conventional notion that the LIP is simply a cellular source of pro-oxidant iron.


Assuntos
Quelantes de Ferro/química , Ferro/farmacologia , Macrófagos/patologia , Óxido Nítrico/metabolismo , Oxidantes/química , Ácido Peroxinitroso/química , Superóxidos/química , Animais , Células Cultivadas , Quelantes de Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nitrosação , Oxidantes/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
13.
J Biol Chem ; 293(19): 7315-7328, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29599292

RESUMO

Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice. To dissociate oxidative stress from impaired oxidative phosphorylation and study whether mitochondrial oxidative stress per se can cause insulin resistance, we used mitochondria-targeted paraquat (MitoPQ) to generate superoxide within mitochondria without directly disrupting the respiratory chain. At ≤10 µm, MitoPQ specifically increased mitochondrial superoxide and hydrogen peroxide without altering mitochondrial respiration in intact cells. Under these conditions, MitoPQ impaired insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation to the plasma membrane in both adipocytes and myotubes. MitoPQ recapitulated many features of insulin resistance found in other experimental models, including increased oxidants in mitochondria but not cytosol; a more profound effect on glucose transport than on other insulin-regulated processes, such as protein synthesis and lipolysis; an absence of overt defects in insulin signaling; and defective insulin- but not AMP-activated protein kinase (AMPK)-regulated GLUT4 translocation. We conclude that elevated mitochondrial oxidants rapidly impair insulin-regulated GLUT4 translocation and significantly contribute to insulin resistance and that MitoPQ is an ideal tool for studying the link between mitochondrial oxidative stress and regulated GLUT4 trafficking.


Assuntos
Resistência à Insulina , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Células 3T3-L1 , Adenilato Quinase/metabolismo , Adipócitos/metabolismo , Animais , Transporte de Elétrons/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Herbicidas/farmacologia , Peróxido de Hidrogênio/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mioblastos/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Paraquat/toxicidade , Peroxirredoxinas/metabolismo , Isoformas de Proteínas/metabolismo , Superóxidos/metabolismo
14.
J Biol Chem ; 293(13): 4636-4643, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29259135

RESUMO

The copper-containing superoxide dismutases (SODs) represent a large family of enzymes that participate in the metabolism of reactive oxygen species by disproportionating superoxide anion radical to oxygen and hydrogen peroxide. Catalysis is driven by the redox-active copper ion, and in most cases, SODs also harbor a zinc at the active site that enhances copper catalysis and stabilizes the protein. Such bimetallic Cu,Zn-SODs are widespread, from the periplasm of bacteria to virtually every organelle in the human cell. However, a new class of copper-containing SODs has recently emerged that function without zinc. These copper-only enzymes serve as extracellular SODs in specific bacteria (i.e. Mycobacteria), throughout the fungal kingdom, and in the fungus-like oomycetes. The eukaryotic copper-only SODs are particularly unique in that they lack an electrostatic loop for substrate guidance and have an unusual open-access copper site, yet they can still react with superoxide at rates limited only by diffusion. Copper-only SOD sequences similar to those seen in fungi and oomycetes are also found in the animal kingdom, but rather than single-domain enzymes, they appear as tandem repeats in large polypeptides we refer to as CSRPs (copper-only SOD-repeat proteins). Here, we compare and contrast the Cu,Zn versus copper-only SODs and discuss the evolution of copper-only SOD protein domains in animals and fungi.


Assuntos
Cobre , Proteínas Fúngicas , Fungos/enzimologia , Metaloproteínas , Mycobacterium/enzimologia , Oomicetos/enzimologia , Proteínas Periplásmicas , Superóxido Dismutase , Zinco , Cobre/química , Cobre/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Metaloproteínas/química , Metaloproteínas/classificação , Metaloproteínas/metabolismo , Proteínas Periplásmicas/química , Proteínas Periplásmicas/classificação , Proteínas Periplásmicas/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/classificação , Superóxido Dismutase/metabolismo , Zinco/química , Zinco/metabolismo
15.
Chemistry ; 24(9): 2065-2069, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29210122

RESUMO

Nitrogen-containing heteroarene motifs are found in numerous pharmaceuticals, natural products, and synthetic materials. Although several elegant methods for synthesis of these compounds through dehydrogenation of the corresponding saturated heterocycles have been reported, some of the methods are hampered by long reaction times, harsh conditions, and the need for catalysts that are not readily available. This work reports a novel method for dehydrogenation of N-heterocycles. Specifically, O2.- generated in situ acts as the oxidant for N-heterocycle substrates that are susceptible to oxidation through a hydrogen atom transfer mechanism. This method provides a general, green route to N-heteroarenes.

16.
Methods Mol Biol ; 1694: 417-425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080184

RESUMO

The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O2.-) and hydrogen peroxide (O2.-) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H2O2. Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H2O2- and O2.- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Transporte Biológico , Espaço Extracelular/metabolismo , Peróxido de Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Microscopia Confocal , Oxirredução , Células Vegetais , Nicotiana/citologia , Nicotiana/metabolismo
17.
Free Radic Biol Med ; 113: 424-438, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28993273

RESUMO

Psychological stress, depression and anxiety lead to multiple organ dysfunctions wherein stress-related mucosal disease (SRMD) is common to people experiencing stress and also occur as a side effect in patients admitted to intensive care units; however the underlying molecular aetiology is still obscure. We report that in rat-SRMD model, cold restraint-stress severely damaged gut mitochondrial functions to generate superoxide anion (O2•-), depleted ATP and shifted mitochondrial fission-fusion dynamics towards enhanced fission to induce mucosal injury. Activation of mitophagy to clear damaged and fragmented mitochondria was evident from mitochondrial translocation of Parkin and PINK1 along with enhanced mitochondrial proteome ubiquitination, depletion of mitochondrial DNA copy number and TOM 20. However, excess and sustained accumulation of O2•--generating defective mitochondria overpowered the mitophagic machinery, ultimately triggering Bax-dependent apoptosis and NF-κB-intervened pro-inflammatory mucosal injury. We further observed that stress-induced enhanced serum corticosterone stimulated mitochondrial recruitment of glucocorticoid receptor (GR), which contributed to gut mitochondrial dysfunctions as documented from reduced ETC complex 1 activity, mitochondrial O2•- accumulation, depolarization and hyper-fission. GR-antagonism by RU486 or specific scavenging of mitochondrial O2•- by a mitochondrially targeted antioxidant mitoTEMPO ameliorated stress-induced mucosal damage. Gut mitopathology and mucosal injury were also averted when the perception of mental stress was blocked by pre-treatment with a sedative or antipsychotic. Altogether, we suggest the role of mitochondrial GR-O2•--fission cohort in brain-mitochondria cross-talk during acute mental stress and advocate the utilization of this pathway as a potential target to prevent mitochondrial unrest and gastropathy bypassing central nervous system.


Assuntos
Trifosfato de Adenosina/metabolismo , Mucosa Gástrica/metabolismo , Imobilização/psicologia , Mitocôndrias/metabolismo , Estresse Psicológico/metabolismo , Animais , Antipsicóticos/farmacologia , Temperatura Baixa , Corticosterona/sangue , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Regulação da Expressão Gênica , Imobilização/métodos , Inflamação , Proteínas de Membrana Transportadoras , Mifepristona/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Compostos Organofosforados/farmacologia , Estresse Oxidativo , Piperidinas/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Receptores de Superfície Celular , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Estômago , Estresse Psicológico/genética , Estresse Psicológico/patologia , Superóxidos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
18.
J Biol Chem ; 292(41): 16804-16809, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28842493

RESUMO

Mitochondrial production of superoxide and hydrogen peroxide is potentially important in cell signaling and disease. Eleven distinct mitochondrial sites that differ markedly in capacity are known to leak electrons to oxygen to produce O2̇̄ and/or H2O2 We discuss their contributions to O2̇̄/H2O2 production under native conditions in mitochondria oxidizing different substrates and in conditions mimicking physical exercise and the changes in their capacities after caloric restriction. We review the use of S1QELs and S3QELs, suppressors of mitochondrial O2̇̄/H2O2 generation that do not inhibit oxidative phosphorylation, as tools to characterize the contributions of specific sites in situ and in vivo.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Fisiológico , Superóxidos/metabolismo , Animais , Restrição Calórica , Humanos , Mitocôndrias/patologia
19.
J Biol Chem ; 291(40): 20911-20923, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535222

RESUMO

In eukaryotes the bimetallic Cu/Zn superoxide dismutase (SOD) enzymes play important roles in the biology of reactive oxygen species by disproportionating superoxide anion. Recently, we reported that the fungal pathogen Candida albicans expresses a novel copper-only SOD, known as SOD5, that lacks the zinc cofactor and electrostatic loop (ESL) domain of Cu/Zn-SODs for substrate guidance. Despite these abnormalities, C. albicans SOD5 can disproportionate superoxide at rates limited only by diffusion. Here we demonstrate that this curious copper-only SOD occurs throughout the fungal kingdom as well as in phylogenetically distant oomycetes or "pseudofungi" species. It is the only form of extracellular SOD in fungi and oomycetes, in stark contrast to the extracellular Cu/Zn-SODs of plants and animals. Through structural biology and biochemical approaches we demonstrate that these copper-only SODs have evolved with a specialized active site consisting of two highly conserved residues equivalent to SOD5 Glu-110 and Asp-113. The equivalent positions are zinc binding ligands in Cu/Zn-SODs and have evolved in copper-only SODs to control catalysis and copper binding in lieu of zinc and the ESL. Similar to the zinc ion in Cu/Zn-SODs, SOD5 Glu-110 helps orient a key copper-coordinating histidine and extends the pH range of enzyme catalysis. SOD5 Asp-113 connects to the active site in a manner similar to that of the ESL in Cu/Zn-SODs and assists in copper cofactor binding. Copper-only SODs are virulence factors for certain fungal pathogens; thus this unique active site may be a target for future anti-fungal strategies.


Assuntos
Candida albicans/enzimologia , Cobre/química , Proteínas Fúngicas/química , Superóxido Dismutase/química , Zinco/química , Candida albicans/genética , Catálise , Cobre/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Oomicetos/enzimologia , Oomicetos/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Zinco/metabolismo
20.
J Biol Chem ; 291(17): 9257-67, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26953346

RESUMO

Parkinson disease is a debilitating and incurable neurodegenerative disorder affecting ∼1-2% of people over 65 years of age. Oxidative damage is considered to play a central role in the progression of Parkinson disease and strong evidence links chronic exposure to the pesticide paraquat with the incidence of the disease, most probably through the generation of oxidative damage. In this work, we demonstrated in human SH-SY5Y neuroblastoma cells the beneficial role of superoxide dismutase (SOD) enzymes against paraquat-induced toxicity, as well as the therapeutic potential of the SOD-mimetic compound M40403. Having verified the beneficial effects of superoxide dismutation in cells, we then evaluated the effects using Drosophila melanogaster as an in vivo model. Besides protecting against the oxidative damage induced by paraquat treatment, our data demonstrated that in Drosophila M40403 was able to compensate for the loss of endogenous SOD enzymes, acting both at a cytosolic and mitochondrial level. Because previous clinical trials have indicated that the M40403 molecule is well tolerated in humans, this study may have important implication for the treatment of Parkinson disease.


Assuntos
Materiais Biomiméticos/farmacologia , Modelos Biológicos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Paraquat/efeitos adversos , Superóxido Dismutase , Animais , Linhagem Celular Tumoral , Drosophila melanogaster , Humanos , Manganês/farmacologia , Paraquat/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA