Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Int J Pharm ; 661: 124417, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964489

RESUMO

Benznidazole (BNZ) serves as the primary drug for treating Chagas Disease and is listed in the WHO Model List of Essential Medicines for Children. Herein, a new child-friendly oral BNZ delivery platform is developed in the form of supramolecular eutectogels (EGs). EGs address BNZ's poor oral bioavailability and provide a flexible twice-daily dose in stick-pack format. This green and sustainable formulation strategy relies on the gelation of drug-loaded Natural Deep Eutectic Solvents (NaDES) with xanthan gum (XG) and water. Specifically, choline chloride-based NaDES form stable and biocompatible 5 mg/mL BNZ-loaded EGs. Rheological and Low-field NMR investigations indicate that EGs are viscoelastic materials comprised of two co-existing regions in the XG network generated by different crosslink distributions between the biopolymer, NaDES and water. Remarkably, the shear modulus and relaxation spectrum of EGs remain unaffected by temperature variations. Upon dilution with simulated gastrointestinal fluids, EGs results in BNZ supersaturation, serving as the primary driving force for its absorption. Interestingly, after oral administration of EGs to rats, drug bioavailability increases by 2.6-fold, with a similar increase detected in their cerebrospinal fluid. The noteworthy correlation between in vivo results and in vitro release profiles confirms the efficacy of EGs in enhancing both peripheral and central BNZ oral bioavailability.

2.
Chemosphere ; 361: 142569, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852627

RESUMO

Chemical oxo-precipitation (COP) is an enhanced precipitation method for boron removal with the conversion of boric acid to perborate anions. When using barium-based precipitant, the boron can be effectively precipitated as barium perborates (BaPBs). The phase transformation of BaPBs from amorphous (A-BaPB, Ba(B(OH)3OOH)2) to crystalline (C-BaPB, BaB2(OO)2(OH)4) form is crucial for effective boron removal. However, scaling up this phase transformation of BaPBs is hindered by poor diffusion. This study aims to promote the growth of C-BaPB through seed-induced crystal growth, eliminating the need for phase transformation. By examining the relationship between crystal growth rate and supersaturation, surface spiral growth was identified as the rate-limiting step of the growth of micron-sized seeds near pHpzc. To enable continuous crystal growth, granular seeds of C-BaPB were prepared and employed as the medium for fluidized-bed crystallization (FBC). The system reached steady state 3 hydraulic retention times, achieving 90% boron removal. The effect of surface loading, ionic strength, and dosages on steady-state crystal growth rate was studied, revealing a shift of the rate-limiting step in FBC to diffusion. Lastly, the system that constituted of two FBCs in-series for sequential crystallization of A-BaPB and C-BaPB was demonstrated. The integrated system provided 97.8% of boron removal from synthetic wastewater containing 500 mg-B/L, with 92.3% of boron crystallized on the granular seeds of BaPBs.


Assuntos
Bário , Boro , Cristalização , Boro/química , Bário/química , Boratos/química , Precipitação Química , Poluentes Químicos da Água/química
3.
Colloids Surf B Biointerfaces ; 241: 114057, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924852

RESUMO

Amorphous solid dispersion (ASD) has been widely used to enhance the oral bioavailability of water-insoluble drugs for oral delivery because of its advantages of enhancing solubility and dissolution rate. However, the problems related to drug recrystallization after drug dissolution in media or body fluid have constrained its application. Recently, a self-nanomicellizing solid dispersion (SNMSD) has been developed by incorporating self-micellizing polymers as carriers to settle the problems, markedly improving the ability of supersaturation maintenance and enhancing the oral bioavailability of drug. Spontaneous formation and stability of the self-nanomicelle (SNM) have been proved to be the key to supersaturation maintenance of SNMSD system. This offers a novel research direction for maintaining supersaturation and enhancing the bioavailability of ASDs. To delve into the advantages of SNMSDs, we provide a concise review introducing the formation mechanism, characterization methods and stability of SNMs, emphasizing the advantages of SNMSDs for oral drug delivery facilitated by SNM formation, and discussing relevant research prospects.

4.
J Pharm Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908795

RESUMO

Supersaturation and precipitation within the gastrointestinal tract can influence oral absorption of active pharmaceutical ingredients (APIs). Supersaturation of weakly basic APIs upon transfer from the stomach into the small intestine may enhance their absorption, while salt forms of poorly soluble weak acids may generate supersaturated solutions in both stomach and intestine. Likewise, APIs with solubility-limited absorption may be developed as enabling formulations intended to produce supersaturated solutions of the API in the gut. Integrating the supersaturation/precipitation characteristics of the API into the biopharmaceutical risk classification enables comprehensive mapping of potential developability risks and guides formulation selection towards optimizing oral bioavailability (BA). The refined Developability Classification System (rDCS) provides an approach for this purpose. In this work, the rDCS strategy is revisited and a stratified approach integrating the in vitro supersaturation and precipitation behavior of APIs and their formulations is proposed.

5.
J Pharm Sci ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942292

RESUMO

This study aimed to investigate the impact of amorphous solubility and colloidal drug-rich droplets on drug absorption. The amorphous solubility of cilnidipine (CND) in AS-HF grade of hypromellose acetate succinate (HPMC-AS) solution was significantly reduced compared to that in non-polymer solution due to AS-HF partitioning into the CND-rich phase. In contrast, AS-LF grade of HPMC-AS has minimal effect on the amorphous solubility. The size of colloidal CND-rich droplets formed in the CND-supersaturated solution was less than 100 nm in the presence of AS-HF, while 200-450 nm in the presence of AS-LF. When the CND concentrations were near the amorphous solubility, CND membrane flux was reduced in the presence of AS-HF due to the decrease in the amorphous solubility of CND. However, the CND flux increased with the increase in CND-rich droplets, especially in the AS-HF solution. The size reduction of the CND-rich droplets led to their effective diffusion into the unstirred water layer, enhancing CND flux. In higher CND concentration regions, the CND flux became higher in the AS-HF solution than in the AS-LF solution. Thus, it is essential to elucidate the drug concentration-dependent impact of the colloidal drug-rich droplets on the drug absorption performance to optimize supersaturating formulations.

6.
Acta Pharm ; 74(2): 201-227, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815207

RESUMO

Lipid-based systems, such as self-microemulsifying systems (SMEDDS) are attracting strong attention as a formulation approach to improve the bioavailability of poorly water-soluble drugs. By applying the "spring and parachute" strategy in designing supersaturable SMEDDS, it is possible to maintain the drug in the supersaturated state long enough to allow absorption of the complete dose, thus improving the drug's bio-availability. As such an approach allows the incorporation of larger amounts of the drug in equal or even lower volumes of SMEDDS, it also enables the production of smaller final dosage forms as well as decreased gastrointestinal irritation, being of particular importance when formulating dosage forms for children or the elderly. In this review, the technological approaches used to prolong the drug supersaturation are discussed regarding the type and concentration of polymers used in liquid and solid SMEDDS formulation. The addition of hypromellose derivatives, vinyl polymers, polyethylene glycol, polyoxyethylene, or polymetacrylate copolymers proved to be effective in inhibiting drug precipitation. Regarding the available literature, hypromellose has been the most commonly used polymeric precipitation inhibitor, added in a concentration of 5 % (m/m). However, the inhibiting ability is mainly governed not only by the physicochemical properties of the polymer but also by the API, therefore the choice of optimal precipitation inhibitor is recommended to be evaluated on an individual basis.


Assuntos
Disponibilidade Biológica , Emulsões , Lipídeos , Solubilidade , Humanos , Lipídeos/química , Precipitação Química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/administração & dosagem , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Polímeros/química , Sistemas de Liberação de Medicamentos , Excipientes/química , Animais
7.
Conserv Physiol ; 12(1): coae023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765883

RESUMO

Total dissolved gas (TDG) supersaturation downstream of dams can occur in the Yangtze River basin and is known to cause stress and even death in fish. Consequently, it is important to establish tolerance thresholds of endemic fish to protect local aquatic resources. We conducted experiments to assess survival characteristics and swimming ability of bighead carp, an important commercial fish dwelling in the Yangtze River, to evaluate its tolerance threshold to TDG supersaturation. The typical external symptoms of gas bubble trauma (GBT) were observed and the time when the fish lost equilibrium and died were recorded. The results showed that the mortality occurred when TDG level exceeded 125%, with obvious symptoms such as exophthalmos and bubbles on the head. The interval between loss of equilibrium and mortality decreased with an increase in TDG level. Neither exposure time nor TDG level significantly affected the critical swimming speed (Ucrit) of fish exposed to non-lethal exposure (110%, 120% and 125% TDG) over a 7 day period. Significant reductions in Ucrit were found under 130% and 135% TDG conditions when the exposure lasted 52.0 h and 42.9 h, respectively. The Ucrit also significantly decreased after exposure of 1.6 h under 140% TDG condition. Moreover, after exposure to 140% TDG for 39.2 h, 135% TDG for 56.5 h and 130% TDG for 95.9 h, bighead carp were transferred into air saturated water to recover for 24 h or 48 h; however, swimming performance remained impaired. The results of this study indicate that 125% TDG was the highest TDG level where limited mortality was observed and the swimming ability was not impaired, showing that 125% TDG can be set as the tolerance threshold of this species to guide the operation of dams in the Yangtze River Basin.

8.
Environ Sci Pollut Res Int ; 31(23): 34324-34339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700768

RESUMO

The combination of aerated flows and a high-pressure environment in a stilling basin can result in the supersaturation of total dissolved gas (TDG) downstream of hydraulic projects, posing an ecological risk to aquatic populations by inducing gas bubble disease (GBD) or other negative effects. There is limited literature reporting TDG mass transfer experiments on a complete physical dam model; most existing research is based on measurements in prototype tailwaters. In this study, TDG mass transfer experiments were conducted on a physical model of an under-constructed dam, with TDG-supersaturated water as the inflow, and TDG concentrations were meticulously monitored within the stilling basin. The measurements indicate that the TDG saturation at the outlet of the stilling basin decreased by 13.7% and 10.6% compared to the inlet for the two cases, respectively. Subsequently, an improved TDG prediction model was developed by incorporating a sub-grid air entrainment model and a phase-constrained scalar model. The numerical simulation results were compared with experimental data, indicating a maximum error in TDG saturation at all measured points of less than ± 3%. Moreover, the TDG saturation showed an error of only ± 0.3% at the outlet of the stilling basin. This model has broad applicability to various flow types for obtaining TDG mass transfer results and evaluating mitigation measures of TDG supersaturation to reduce the harmful effects on aquatic ecosystems.


Assuntos
Modelos Teóricos , Gases , Monitoramento Ambiental/métodos
9.
Int J Pharm ; 658: 124196, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38703933

RESUMO

The aim of this study was to prepare nintedanib nanocrystals (BIBF-NCs) to lower the solubility of the drug in the stomach, maintain the supersaturation of the drug in the intestine, and improve the oral absorption of nintedanib (BIBF). In this study, BIBF-NCs were prepared by acid solubilization and alkaline precipitation following nano granding method, with a particle size of 290.80 nm and a zeta potential of -49.13 mV. Subsequently, Nintedanib enteric-coated nanocrystals (BIBF-NCs@L100) were obtained by coating with Eudragit L100. The microscopic morphology, crystalline characteristics, stability, and in vitro dissolution of BIBF-NCs and BIBF-NCs@L100 were also studied. In addition, the in vivo pharmacokinetic behaviors of Samples prepared according to the prescription process of commercially available soft capsules (soft capsules), BIBF-NCs, and BIBF-NCs@L100 were further investigated. The results showed that the oral bioavailability of BIBF-NCs and BIBF-NCs@L100 were increased by 1.43 and 2.58 times, compared with that of the soft capsules. BIBF-NCs@L100 effectively reduced the release of BIBF in the formulation in the stomach, allowing more drug to reach the intestine in the form of nanocrystals, maintaining the supersaturation in the intestine, thereby improving the oral bioavailability of the drug.


Assuntos
Disponibilidade Biológica , Indóis , Nanopartículas , Tamanho da Partícula , Ácidos Polimetacrílicos , Solubilidade , Nanopartículas/química , Indóis/farmacocinética , Indóis/administração & dosagem , Indóis/química , Animais , Administração Oral , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacocinética , Masculino , Liberação Controlada de Fármacos , Ratos Sprague-Dawley
10.
Eur J Pharm Sci ; 198: 106791, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705420

RESUMO

Despite the widespread use of polymers as precipitation inhibitors in supersaturating drug formulations, the current understanding of their mechanisms of action is still incomplete. Specifically, the role of hydrophobic drug interactions with polymers by considering possible supramolecular conformations in aqueous dispersion is an interesting topic. Accordingly, this study investigated the tendency of polymers to create hydrophobic domains, where lipophilic compounds may nest to support drug solubilisation and supersaturation. Fluorescence spectroscopy with the environment-sensitive probe pyrene was compared with atomistic molecular dynamics simulations of the model drug fenofibrate (FENO). Subsequently, kinetic drug supersaturation and thermodynamic solubility experiments were conducted. As a result, the different polymers showed hydrophobic domain formation to a varying degree and the molecular simulations supported interpretation of fluorescence spectroscopy data. Molecular insights were gained into the conformational structure of how the polymers interacted with FENO in solution phase, which apart from nucleation and crystal growth effects, determined drug concentrations in solution. Notable was that even at the lowest polymer concentration of 0.01 %, w/v, there were polymer-specific solubilisation effects of FENO observed and the resulting reduction in apparent drug supersaturation provided relevant knowledge both from a mechanistic and practical perspective.


Assuntos
Fenofibrato , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Polímeros , Solubilidade , Fenofibrato/química , Polímeros/química , Precipitação Química , Água/química , Soluções , Termodinâmica
11.
Mol Pharm ; 21(6): 2878-2893, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767457

RESUMO

Understanding the interplay between kinetics and thermodynamics of polymer-mediated liquid-liquid phase separation is crucial for designing and implementing an amorphous solid dispersion formulation strategy for poorly water-soluble drugs. This work investigates the phase behaviors of a poorly water-soluble model drug, celecoxib (CXB), in a supersaturated aqueous solution with and without polymeric additives (PVP, PVPVA, HPMCAS, and HPMCP). Drug-polymer-water ternary phase diagrams were also constructed to estimate the thermodynamic behaviors of the mixtures at room temperature. The liquid-liquid phase separation onset point for CXB was detected using an inline UV/vis spectrometer equipped with a fiber optic probe. Varying CXB concentrations were achieved using an accurate syringe pump throughout this study. The appearance of the transient nanodroplets was verified by cryo-EM and total internal reflection fluoresence microscopic techniques. The impacts of various factors, such as polymer composition, drug stock solution pumping rates, and the types of drug-polymer interactions, are tested against the onset points of the CXB liquid-liquid phase separation (LLPS). It was found that the types of drug-polymer interactions, i.e., hydrogen bonding and hydrophobic interactions, are vital to the position and shapes of LLPS in the supersaturation drug solution. A relation between the behaviors of LLPS and its location in the CXB-polymer-water ternary phase diagram was drawn from the findings.


Assuntos
Celecoxib , Polímeros , Solubilidade , Termodinâmica , Água , Polímeros/química , Água/química , Celecoxib/química , Cinética , Química Farmacêutica/métodos , Transição de Fase , Separação de Fases
12.
Int J Pharm ; 656: 124108, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604540

RESUMO

Lipid-based formulations (LbFs) are an extensively used approach for oral delivery of poorly soluble drug compounds in the form of lipid suspension and lipid solution. However, the high target dose and inadequate lipid solubility limit the potential of brick dust molecules to be formulated as LbFs. Thus, the complexation of such molecules with a lipophilic counterion can be a plausible approach to improve the solubility in lipid-based solutions via reducing drug crystallinity and polar surface area. The study aimed to enhance drug loading in lipid solution for Nilotinib (Nil) through complexation or salt formation with different lipophilic counterions. We synthesized different lipophilic salts/ complexes via metathesis reactions and confirmed their formation by 1H NMR and FTIR. Docusate-based lipophilic salt showed improved solubility in medium-chain triglycerides (∼7 to 7.5-fold) and long-chain triglycerides (∼30 to 35-fold) based lipids compared to unformulated crystalline Nil. The increased lipid solubility could be attributed to the reduction in drug crystallinity which was further confirmed by the PXRD and DSC. Prototype LbFs were prepared to evaluate drug loading and their physicochemical characteristics. The findings suggested that structural features of counterion including chain length and lipophilicity affect the drug loading in LbF. In addition, physical stability testing of formulations was performed, inferring that aliphatic sulfate-based LbFs were stable with no sign of drug precipitation or salt disproportionation. An in vitro lipolysis-permeation study revealed that the primary driver of absorptive flux is the solubilization of the drug and reduced amount of lipid. Further, the in vivo characterization was conducted to measure the influence of increased drug load on oral bioavailability. Overall, the results revealed enhanced absorption of lipophilic salt-based LbF over unformulated crystalline Nil and conventional LbF (drug load equivalent to equilibrium solubility) which supports the idea that lipophilic salt-based LbF enhances drug loading, and supersaturation-mediated drug solubilization, unlocking the full potential of LbF.


Assuntos
Lipídeos , Sais , Solubilidade , Sais/química , Animais , Lipídeos/química , Masculino , Administração Oral , Composição de Medicamentos/métodos , Pirimidinas/química , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Poeira , Liberação Controlada de Fármacos , Ratos , Química Farmacêutica/métodos , Interações Hidrofóbicas e Hidrofílicas , Triglicerídeos/química , Estabilidade de Medicamentos , Portadores de Fármacos/química , Cristalização
13.
Am J Kidney Dis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583757

RESUMO

RATIONALE & OBJECTIVE: Most previous studies of the relationship between urinary factors and kidney stone risk have either assumed a linear effect of urinary parameters on kidney stone risk or implemented arbitrary thresholds suggesting biologically implausible "all-or-nothing" effects. In addition, little is known about the hierarchy of effects of urinary factors on kidney stone risk. This study evaluated the independent associations between urine chemistries and kidney stone formation and examined their magnitude and shape. STUDY DESIGN: Prospective cohort study. SETTING & PARTICIPANTS: We analyzed 9,045 24-hour urine collections from 6,217 participants of the Health Professionals Follow-Up Study and Nurses' Health Studies I and II. EXPOSURE: Urine volume and pH, and concentrations of calcium, citrate, oxalate, potassium, magnesium, uric acid, phosphorus, and sodium. OUTCOME: Incident symptomatic kidney stones. ANALYTICAL APPROACH: Multivariable logistic regression analysis incorporating restricted cubic splines to explore potentially nonlinear relationships between urinary factors and the risk of forming a kidney stone. Optimal inflection point analysis was implemented for each factor, and dominance analysis was performed to establish the relative importance of each urinary factor. RESULTS: Each urinary factor was significantly associated with stone formation except for urine pH. Higher urinary levels of calcium, oxalate, phosphorus, and sodium were associated with a higher risk of stone formation whereas higher urine volume, uric acid, citrate, potassium, and magnesium were associated with a lower risk. The relationships were substantially linear for urine calcium, uric acid, and sodium. By contrast, the magnitudes of the relationships were modestly attenuated at levels above the inflection points for urine oxalate, citrate, volume, phosphorus, potassium, and magnesium. Dominance analysis identified 3 categories of factors' relative importance: higher (calcium, volume, and citrate), intermediate (oxalate, potassium, and magnesium), and lower (uric acid, phosphorus, and sodium). LIMITATIONS: Predominantly White participants, lack of information on stone composition. CONCLUSIONS: Urine chemistries have complex relationships and differential relative associations with the risk of kidney stone formation. PLAIN-LANGUAGE SUMMARY: Kidney stones are common and likely to recur. Certain urinary factors play a role in the development of stones, but their independent roles, relative importance, and shapes of association with stone formation are not well-characterized. We analyzed 24-hour urine collections from individuals with and without kidney stones. Stones were less likely in those with higher urine volume, citrate, potassium, magnesium, and uric acid and were more likely in those with higher calcium, oxalate, phosphorus, and sodium. The acidity of the urine was not related to stones. The urinary parameters showed different degrees of relative importance, with calcium, volume, and citrate being greatest. All parameters exhibited a linear or close-to-linear shape of association with stone formation.

14.
Pharm Res ; 41(5): 959-966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653942

RESUMO

PURPOSE: The purpose of this study was to clarify the extent to which the dissolution profiles of immediate release (IR) products of various drugs differ between biorelevant bicarbonate buffer (BCB) and compendial phosphate buffer (PPB). METHODS: The dissolution profiles of the IR products of fifteen poorly soluble ionizable drugs were measured in BCB and PPB. BCB was set to be relevant to the small intestine (pH 6.8, 10 mM). The pH was maintained using the floating lid method. The Japanese pharmacopeia second fluid (JP2, 25 mM phosphate buffer, nominal pH 6.8) was used as compendial PPB. The compendial paddle apparatus was used for the dissolution tests (500 mL, 50 rpm, 37°C). RESULTS: In 11/15 cases, a difference in dissolved% (< 0.8 or > 1.25-fold) was observed at a time point. In 4/15 cases, the ratio of the area under the dissolution curve was not equivalent (< 0.8 or > 1.25-fold). In the cases of free-form drugs, the dissolution rate tended to be slower in BCB than in JP2. In the case of salt-form drugs, a marked difference was observed for the cases that showed supersaturation. However, no trend was observed in the differences. CONCLUSIONS: Many IR products showed differences in the dissolution profiles between biorelevant BCB and compendial PPB. With the floating lid method, BCB is as simple and easy to use as PPB. Biorelevant BCB is recommended for dissolution testing.


Assuntos
Bicarbonatos , Fosfatos , Solubilidade , Soluções Tampão , Fosfatos/química , Concentração de Íons de Hidrogênio , Bicarbonatos/química , Preparações Farmacêuticas/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos
15.
Ecotoxicol Environ Saf ; 277: 116370, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663198

RESUMO

Total dissolved gas (TDG) supersaturation caused by flood discharge water poses a threat to vital activities such as migration, foraging, and evasion in fish species upstream of the Yangtze River, which may impair the ability of fish to pass through fishways during the migration period, causing poor utilization of fishways. Previous studies have shown that TDG supersaturation reduces the critical and burst swimming abilities of fish, suggesting potential adverse effects on swimming performance. However, studies focusing on the impact of TDG on fish swimming behavior in experimental vertical-slot fishways remain scarce. Therefore, in this study, silver carp (Hypophthalmichthys molitrix) and ya-fish (Schizothorax prenanti) were used as the study species, and comparative passage experiments were carried out in an experimental vertical slot fishway to systematically analyze the effects of TDG supersaturation on their passage behavior. The passage success of the silver carp was 57%, 39%, 26%, and 27% at TDG levels of 100%, 110%, 120%, and 130%, respectively. Passage success of ya-fish was 73%, 37%, 31%, and 35% at TDG concentrations of 100%, 110%, 120%, and 130%, respectively. The passage time for both species increased significantly with increasing TDG levels. Furthermore, the passage routes of silver carp changed significantly compared to the control group, whereas the passage routes of ya-fish changed insignificantly. High levels of TDG supersaturation (≥120%) also contributed to a higher mortality rate of ya-fish passing through the vertical slot fishway. The research results provide valuable data on the influence of TDG supersaturation on fish movement behavior responses in experimental vertical slot fishways, offering a reference for the design of fishways and the formulation of reservoir operation schemes.


Assuntos
Carpas , Natação , Animais , Carpas/fisiologia , Rios/química , Poluentes Químicos da Água/toxicidade , Gases , China , Comportamento Animal/efeitos dos fármacos , Migração Animal/efeitos dos fármacos , Cyprinidae/fisiologia
16.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675589

RESUMO

The aim of this study was to develop cholic-acid-stabilized itraconazole nanosuspensions (ITZ-Nanos) with the objective of enhancing drug dissolution and oral absorption. A laboratory-scale microprecipitation-high-pressure homogenization method was employed for the preparation of the ITZ-Nanos, while dynamic light scattering, transmission electron microscope analysis, X-ray diffraction, differential scanning calorimetry, and high-performance liquid chromatography analysis were utilized to evaluate their physicochemical properties. The absorption and bioavailability of the ITZ-Nanos were assessed using Caco-2 cells and rats, with Sporanox® pellets as a comparison. Prior to lyophilization, the particle size of the ITZ-Nanos measured approximately 225.7 nm. Both X-ray diffraction and differential scanning calorimetry confirmed that the ITZ remained crystalline within the nanocrystals. Compared to the pellets, the ITZ-Nanos exhibited significantly higher levels of supersaturation dissolution and demonstrated enhanced drug uptake by the Caco-2 cells. The AUC(0-t) value for the ITZ-Nanos in rats was 1.33-fold higher than that observed for the pellets. These findings suggest that cholic acid holds promise as a stabilizer for ITZ nanocrystals, as well as potentially other nanocrystals.


Assuntos
Itraconazol , Nanopartículas , Solubilidade , Tensoativos , Itraconazol/química , Itraconazol/farmacocinética , Itraconazol/administração & dosagem , Nanopartículas/química , Humanos , Células CACO-2 , Animais , Ratos , Administração Oral , Tensoativos/química , Masculino , Disponibilidade Biológica , Tamanho da Partícula , Difração de Raios X , Varredura Diferencial de Calorimetria , Ácido Cólico/química
17.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543408

RESUMO

The application of mesoporous carriers in formulations of amorphous solid dispersions (ASDs) has been suggested to enhance the stability of amorphous drugs. However, mesoporous carriers do not demonstrate satisfactory inhibitory effects on the precipitation of active pharmaceutical ingredients (APIs), and the inclusion of an appropriate polymer within ASDs becomes imperative to maintaining drug supersaturation. The aim of this study was to evaluate ternary olanzapine (OLN) ASDs with Syloid 244FP and to find an appropriate polymeric carrier. The polymer's selection criteria were based on the physical stability of the ASDs and the release rate of the drug from the systems. The polymers investigated were hydroxypropylmethyl cellulose (HPMC) and copovidone (coPVP). The formation of ASDs was achievable in all investigated cases, as demonstrated by the complete lack of crystallinity confirmed through both powder X-ray diffraction (pXRD) analysis and differential scanning calorimetry (DSC) for all developed formulations. The solvent shift method was employed to evaluate the ability of the studied carriers to inhibit the precipitation of supersaturated OLN. coPVP emerged as a more suitable precipitation inhibitor compared with HPMC and Syloid 244 FP. Subsequently, in vitro dissolution studies under non-sink conditions revealed a higher degree of supersaturation in ternary systems where coPVP was used as a polymeric carrier, as these systems exhibited, under the examined conditions, up to a 2-fold increase in the released OLN compared with the pure crystalline drug. Moreover, stability studies conducted utilizing pXRD demonstrated that ternary formulations incorporating coPVP and Syloid 244 FP maintained stability for an extended period of 8 months. In contrast, binary systems exhibited a comparatively shorter stability duration, indicating the synergistic effect of coPVP and Syloid 244 FP on the physical stability of the amorphous API. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) studies showed that the development of stronger molecular interactions can be provided as an explanation for this synergistic effect, as the formation of robust H-bonds may be considered responsible for inhibiting the precipitation of the supersaturated API. Therefore, the incorporation of coPVP into OLN ASDs with Syloid 244 FP is considered a highly promising technique for increasing the degree of OLN supersaturation in in vitro dissolution studies and improving the stability of systems.

18.
Eur J Pharm Biopharm ; 197: 114241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432600

RESUMO

This study aims to investigate the potential use of polymer inclusion in the phospholipid-based solid dispersion approach for augmenting the biopharmaceutical performance of Aprepitant (APT). Initially, different polymers were screened using the microarray plate method to assess their ability to inhibit drug precipitation in the supersaturated solution and HPMCAS outperformed the others. Later, the binary (BD) and ternary (TD) phospholipid dispersions were prepared using the co-solvent evaporation method. Solid-state characterization was performed using SEM and PXRD to examine the physical properties, while molecular interactions were probed through FTIR and NMR analysis. In vitro dissolution studies were performed in both fasted and fed state biorelevant media. The results demonstrated a substantial increase in drug release from BD and TD, approximately 4.8 and 9.9 times higher compared to crystalline APT in FaSSIF. Notably, TD also showed a lowered dissolution difference between fed and fasted states in comparison to crystalline APT, indicating a reduction in the positive food effect of APT. Moreover, we assessed the impact of polymer inclusion on permeation under in vitro biomimetic conditions. In comparison with the crystalline APT suspension, both BD and TD demonstrated approximately 3.3 times and 14 times higher steady-state flux (Jss values), respectively. This can be ascribed to the supersaturation and presence of drug-rich submicron particles (nanodroplets) along with the multiple aggregates of drug with phospholipids and polymer in the donor compartment, consequently resulting in a more substantial driving force for passive diffusion. Lastly, in vivo pharmacokinetic evaluation demonstrated the enhanced absorption of both TD and BD over the free drug suspension in the fasted state. This enhancement was evident through a 2.1-fold and 1.3-fold increase in Cmax and a 2.3-fold and 1.4-fold increase in AUC0-t, respectively. Overall, these findings emphasize the potential of polymer-based phospholipid dispersion in enhancing the overall biopharmaceutical performance of APT.


Assuntos
Produtos Biológicos , Fosfolipídeos , Aprepitanto , Solubilidade , Disponibilidade Biológica , Poeira , Polímeros/química
19.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541450

RESUMO

The low-temperature plasma nitriding was utilized to describe the microscopic solid-phase separation in the austenitic stainless-steel type AISI316, induced by the nitrogen supersaturation. This nitrogen supersaturated layer with the thickness of 60 µm had a two-phase nanostructure where the nitrogen-poor and nitrogen-rich clusters separated from each other. Due to this microscopic solid-phase separation, iron and nickel atoms decomposed themselves from chromium atoms and nitrogen solutes in this nitrogen supersaturated AISI316 layer. These microscopic cluster separation and chemical decomposition among the constituent elements in AISI316 were induced in the multi-dimensional scale by the plastic straining along the slip lines in the (111)-orientation from the surface to the depth of matrix. The nitrogen solute diffused through the cluster boundaries into the depth. With the aid of masking technique, this nitrogen supersaturation and nanostructuring was controlled to take place only in the unmasked AISI316 matrix. The nanostructures with two separated clusters were mesoscopically embedded into AISI316 matrix after the masking micro-textures. This microscopic and mesoscopic structure control was available in surface treatment of multi-host metals such as superalloys and high entropy alloys.

20.
Mol Pharm ; 21(4): 1745-1755, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501717

RESUMO

Drug-rich droplets formed through liquid-liquid phase separation (LLPS) have the potential to enhance the oral absorption of drugs. This can be attributed to the diffusion of these droplets into the unstirred water layer (UWL) of the gastrointestinal tract and their reservoir effects on maintaining drug supersaturation. However, a quantitative understanding of the effect of drug-rich droplets on intestinal drug absorption is still lacking. In this study, the enhancement of intestinal drug absorption through the formation of drug-rich droplets was quantitatively evaluated on a mechanistic basis. To obtain fenofibrate (FFB)-rich droplets, an amorphous solid dispersion (ASD) of FFB/hypromellose (HPMC) was dispersed in an aqueous medium. Physicochemical characterization confirmed the presence of nanosized FFB-rich droplets in the supercooled liquid state within the FFB/HPMC ASD dispersion. An in situ single-pass intestinal perfusion (SPIP) assay in rats demonstrated that increased quantities of FFB-rich nanodroplets enhanced the intestinal absorption of FFB. The effective diffusion of FFB-rich nanodroplets through UWL would partially contribute to the improved FFB absorption. Additionally, confocal laser scanning microscopy (CLSM) of cross sections of the rat intestine after the administration of fluorescently labeled FFB-rich nanodroplets showed that these nanodroplets were directly taken up by small intestinal epithelial cells. Therefore, the direct uptake of drug-rich nanodroplets by the small intestine is a potential mechanism for improving FFB absorption in the intestine. To quantitatively evaluate the impact of FFB-rich droplets on the FFB absorption enhancement, we determined the apparent permeabilities of the FFB-rich nanodroplets and dissolved FFB based on the SPIP results. The apparent permeability of the FFB-rich nanodroplets was 110-130 times lower than that of dissolved FFB. However, when the FFB-rich nanodroplet concentration was several hundred times higher than that of dissolved FFB, the FFB-rich nanodroplets contributed significantly to FFB absorption improvement. The present study highlights that drug-rich nanodroplets play a direct role in enhancing drug absorption in the gastrointestinal tract, indicating their potential for further improvement of oral absorption from ASD formulations.


Assuntos
Fenofibrato , Separação de Fases , Ratos , Animais , Preparações Farmacêuticas , Fenofibrato/química , Absorção Intestinal , Intestinos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA