Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1434435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295849

RESUMO

The fabrication of cell-laden biomimetic scaffolds represents a pillar of tissue engineering and regenerative medicine (TERM) strategies, and collagen is the gold standard matrix for cells to be. In the recent years, extrusion 3D bioprinting introduced new possibilities to increase collagen scaffold performances thanks to the precision, reproducibility, and spatial control. However, the design of pure collagen bioinks represents a challenge, due to the low storage modulus and the long gelation time, which strongly impede the extrusion of a collagen filament and the retention of the desired shape post-printing. In this study, the tannic acid-mediated crosslinking of the outer layer of collagen is proposed as strategy to enable collagen filament extrusion. For this purpose, a tannic acid solution has been used as supporting bath to act exclusively as external crosslinker during the printing process, while allowing the pH- and temperature-driven formation of collagen fibers within the core. Collagen hydrogels (concentration 2-6 mg/mL) were extruded in tannic acid solutions (concentration 5-20 mg/mL). Results proved that external interaction of collagen with tannic acid during 3D printing enables filament extrusion without affecting the bulk properties of the scaffold. The temporary collagen-tannic acid interaction resulted in the formation of a membrane-like external layer that protected the core, where collagen could freely arrange in fibers. The precision of the printed shapes was affected by both tannic acid concentration and needle diameter and can thus be tuned. Altogether, results shown in this study proved that tannic acid bath enables collagen bioprinting, preserves collagen morphology, and allows the manufacture of a cell-laden pure collagen scaffold.

2.
Small Methods ; : e2400857, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970553

RESUMO

Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.

3.
Methods Mol Biol ; 2764: 279-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393601

RESUMO

Embedded extrusion 3D bioprinting is a rapidly emerging additive manufacturing methodology that provides a precise spatial deposition of synthetic or natural-origin low-viscosity bioinks during the extrusion printing process. Such a strategy has to date unlocked the freeform extrusion biofabrication of complex micro-to-macro-scale living architectures for numerous applications, including tissue engineering and in vitro disease modeling. In this chapter, we describe a suspension bioprinting methodology leveraging a continuous viscoelastic biopolymer supporting bath functionalized with divalent calcium cations to enable a rapid processing of user-defined bioinks toward architecturally complex 3D in vitro tumor models. This highly simple and cost-effective viscoelastic supporting bath enables a full freeform biofabrication of cell-laden 3D tumor-mimetic architectures that exhibit structural stability in culture post-printing. The cytocompatibility of the supporting bath, its ease of removal from biofabricated living constructs, and its adaptability for processing different ECM-mimetic bioinks open avenues for multi-scale fabrication of numerous types of physiomimetic 3D tumor models for preclinical screening of candidate therapeutics.


Assuntos
Bioimpressão , Neoplasias , Humanos , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Biomimética , Neoplasias/terapia , Alicerces Teciduais/química , Hidrogéis/química
4.
Polymers (Basel) ; 15(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37688119

RESUMO

Biofabrication is crucial in contemporary tissue engineering. The primary challenge in biofabrication lies in achieving simultaneous replication of both external organ geometries and internal structures. Particularly for organs with high oxygen demand, the incorporation of a vascular network, which is usually intricate, is crucial to enhance tissue viability, which is still a difficulty in current biofabrication technology. In this study, we address this problem by introducing an innovative three-dimensional (3D) printing strategy using a thermo-reversible supporting bath which can be easily removed by decreasing the temperature. This technology is capable of printing hydrated materials with diverse crosslinked mechanisms, encompassing gelatin, hyaluronate, Pluronic F-127, and alginate. Furthermore, the technology can replicate the external geometry of native tissues and organs from computed tomography data. The work also demonstrates the capability to print lines around 10 µm with a nozzle with a diameter of 60 µm due to the extra force exerted by the supporting bath, by which the line size was largely reduced, and this technique can be used to fabricate intricate capillary networks.

5.
ACS Appl Mater Interfaces ; 14(37): 41695-41711, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36070996

RESUMO

Three-dimensional (3D) embedded printing is emerging as a potential solution for the fabrication of complex biological structures and with ultrasoft biomaterials. For the supporting medium, bulk gels can support a wide range of bioinks with higher printing resolution as well as better finishing surfaces than granular microgel baths. However, the difficulties of regulating the physical properties of existing bulk gel supporting baths limit the further development of this method. This work has developed a bulk gel supporting bath with easily regulable physical properties to facilitate soft-material fabrication. The proposed bath is composed based on the hydrophobic association between a hydrophobically modified hydroxypropylmethyl cellulose (H-HPMC) and Pluronic F-127 (PF-127). Its rheological properties can be easily regulated; in the preprinting stage by varying the relative concentration of components, during printing by changing the temperature, and postprinting by adding additives with strong hydrophobicity or hydrophilicity. This has made the supporting bath not only available for various bioinks with a range of printing windows but also easy to be removed. Also, the removal strategy is independent of printing conditions like temperature and ions, which empowers the bath to hold great potential for the embedded printing of commonly used biomaterials. The adjustable rheological properties of the bath were leveraged to characterize the embedded printing quantitatively, involving the disturbance during the printing, filament cross-sectional shape, printing resolution, continuity, and the coalescence between adjacent filaments. The match between the bioink and the bath was also explored. Furthermore, low-viscosity bioinks (with 0.008-2.4 Pa s viscosity) were patterned into various 3D complex delicate soft structures (with a 0.5-5 kPa compressive modulus). It is believed that such an easily regulable assembled bath could serve as an available tool to support the complex biological structure fabrication and open unique prospects for personalized medicine.


Assuntos
Bioimpressão , Microgéis , Banhos , Materiais Biocompatíveis , Bioimpressão/métodos , Celulose , Hidrogéis/química , Poloxâmero , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA