Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68.062
Filtrar
1.
Biomaterials ; 313: 122807, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39241553

RESUMO

Multiple Sclerosis (MS) is an autoimmune condition targeting the central nervous system (CNS) characterized by focal demyelination with inflammation, causing neurodegeneration and gliosis. This is accompanied by a refractory period in relapsing MS or chronic progression in primary progressive MS. Current MS treatments target disease relapses and aim to reduce further demyelination and disability. These include the treatment of acute exacerbations through global immunomodulation upon corticosteroid administration, which are accompanied by adverse reactions. Disease modifying therapies (DMTs) which provide targeted immunosuppression of T and B cells, and sequestration of leukocytes out of CNS, have led to further improvements in demyelination prevention and disease burden reduction. Despite their efficacy, DMTs are ineffective in remyelination, pathology reversal and have minimal effects in progressive MS. The advent of modern biomedical engineering approaches in combination with a better understanding of MS pathology, has led to the development of novel, regenerative approaches to treatment. Such treatments utilize neural stem cells (NSCs) and can reduce disease relapses and reverse damage caused by the disease through localized tissue regeneration. While at initial stages, pre-clinical and clinical studies utilizing NSCs and immune modulation have shown promising outcomes in tissue regeneration, creating a potential new era in MS therapy.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/terapia , Animais , Engenharia Biomédica/métodos , Células-Tronco Neurais/transplante
2.
J Environ Sci (China) ; 150: 1-13, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306387

RESUMO

Iron oxide nanoparticles (IONPs) have wide applications in the biomedical field due to their outstanding physical and chemical properties. However, the potential adverse effects and related mechanisms of IONPs in human organs, especially the lung, are still largely ignored. In this study, we found that group-modified IONPs (carboxylated, aminated and silica coated) induce slight lung cell damage (in terms of the cell cycle, reactive oxygen species (ROS) production, cell membrane integrity and DNA damage) at a sublethal dosage. However, aminated IONPs could release more iron ions in the lysosome than the other two types of IONPs, but the abnormally elevated iron ion concentration did not induce ferroptosis. Intriguingly, amino-modified IONPs aggravated the accumulation of intracellular peroxides induced by the ferroptosis activator RSL3 and thus caused ferroptosis in vitro, and the coadministration of amino-modified IONPs and RSL3 induced more severe lung injury in vivo. Therefore, our data revealed that the surface functionalization of IONPs plays an important role in determining their potential pulmonary toxicity, as surface modification influences their degradation behavior. These results provide guidance for the design of future IONPs and the corresponding safety evaluations and predictions.


Assuntos
Ferroptose , Ferro , Lisossomos , Ferroptose/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Ferro/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade , Morte Celular/efeitos dos fármacos
3.
Food Microbiol ; 125: 104639, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39448150

RESUMO

To prevent foodborne illness, adequate cleaning and disinfection (C&D) is essential to remove pathogenic bacteria from the slaughter environment. The aim of this study was to determine the presence of Campylobacter spp., Listeria monocytogenes, and extended-spectrum beta-lactamase-producing Escherichia coli (ESBL E. coli) before and after C&D in slaughterhouses. Samples from food- and non-food contact surfaces taken before and after C&D in one red meat and one poultry slaughterhouse were analyzed for the target bacteria. Whole-genome sequencing and antimicrobial susceptibility testing were performed. In total, 484 samples were analyzed. Campylobacter spp. were isolated from 13.0% to 15.5% of samples before C&D in the red meat and poultry slaughterhouse, respectively. Listeria monocytogenes was isolated before C&D in 12.5% and 5.2% of samples in the red meat and poultry slaughterhouse, respectively. It was noted that C. jejuni was detected on multiple surfaces and that L. monocytogenes showed potential persistence in one slaughterhouse. After C&D, L. monocytogenes was found in one sample. ESBL E. coli was not detected either before or after C&D. These findings show the possibility to remove pathogenic bacteria from slaughter and meat processing facilities, but also indicate that deficiencies in slaughter hygiene pose a risk of cross-contamination of meat.


Assuntos
Matadouros , Campylobacter , Desinfecção , Escherichia coli , Listeria monocytogenes , Aves Domésticas , beta-Lactamases , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/enzimologia , Listeria monocytogenes/isolamento & purificação , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Campylobacter/genética , Campylobacter/isolamento & purificação , Campylobacter/efeitos dos fármacos , Campylobacter/enzimologia , Desinfecção/métodos , Aves Domésticas/microbiologia , Microbiologia de Alimentos , Contaminação de Alimentos/análise , Antibacterianos/farmacologia
4.
J Colloid Interface Sci ; 678(Pt C): 111-119, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39284249

RESUMO

Although zeolitic imidazolate frameworks (ZIFs) possess the merits of orderly porosity, high permeability, and easy functionalization, the transformation of ZIFs into the real active species and the promotion of the catalytic efficiency and stability are still challenging. Herein, CoMo-based three-dimensional (3D) hollow nanocages composed of interconnected nanosheets are fabricated by in-situ etching metal-organic framework (ZIF-67) under the aid of MoO42-. X-ray photoelectron spectroscopy (XPS) and in-situ Raman confirm that Mo leaching can accelerate surface reconstruction and generate CoOOH active sites after continuous oxidation. Benefiting from the nanostructure and electronic properties after surface reconstruction, the engineered CoMo-30 exhibits the lowest overpotential of 280 mV at 30 mA cm-2 and robust stability over 110 h in 1 M KOH media for oxygen evolution reaction (OER), which significantly surpasses the other counterparts and commercial RuO2. Density functional theory (DFT) calculations indicate that CoMo-30 has a lower free energy of *O â†’ *OOH as rate determining step (RDS), suggesting that CoOOH sites play a crucial role in enhancing the activity and kinetics of OER. This work provides valuable insights into the rational design of hollow structures and the structure-composition-activity relationship during the electrochemical reaction process.

5.
J Colloid Interface Sci ; 678(Pt C): 134-142, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288574

RESUMO

Aqueous Zn-metal batteries open up promising prospects for large-scale energy storage due to the advantages of ample components, cost-effectiveness, and safety features. However, the notorious dendritic development and unavoidable hydrogen evolution reaction of Zn have grown to be one of the main barriers inhibiting its further commercialization. Despite substantial studies, the mechanism of nucleation and deposition of Zn2+ ions on zinc layer surfaces remains elusive. Here, inspired by additive, the SnCl2 additive is introduced to initiate the in-situ formation of the ZnS-rich solid electrolyte interphase (SEI) layer on the Zn anode, which creates a protective "shielding effect" that hinders direct contact between water and the zinc surface, suppressing the random growth of Zn dendrites in the whole process. The mechanism of Zn nucleation was revealed by employing high-resolution transmission electron microscopy, consecutive electron diffraction coupled with finite element method (FEM) simulations. Moreover, spontaneously formed 3D architecture consists of micorsized hemispherical Sn particles not only suppresses the Zn dendrite growth by reducing the local current density, but also enables the lateral growth of Zn crystals by increasing the average surface energy. Such an electrolyte enables a long cycle life of over 2000 h in the Zn||Zn cell. Importantly, the assembled Zn||MnVO full cells with SnCl2 electrolyte also delivers substantial capacity (171.1mA h g-1 at 1 A h g-1), presenting a promising application. These discoveries not only deepen the comprehension of fundamental scientific knowledge regarding the microscopic reaction mechanism of the Zn anode but also offer significant insights for optimizing performance.

6.
J Colloid Interface Sci ; 678(Pt C): 789-795, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39312867

RESUMO

Surface states have been a longstanding and sometimes underestimated problem in gallium nitride (GaN) based devices. The instability caused by surface-charge-trapping in GaN-based transistors is practically the same problem faced by the inventors of the silicon (Si) field effect transistors more than half a century ago. Although in Si this problem was eventually solved by oxygen and hydrogen-based passivation, in GaN, such breakthrough has yet to be made. Apparently, some of this surface charge originates in molecules adsorbed on its surface. Here, it is shown that the charge density associated with the GaN yellow band desorbs upon mild heat treatment in vacuum and re-adsorbs on exposure to the air. Selective exposure of GaN to nitrogen dioxide (NO2) reproduces this surface charge to its original distribution, as does exposure to air. Residual gas analysis of the gases desorbed during heat treatment shows a large concentration of nitric oxide (NO). These observations suggest that selective adsorption of NO2 is responsible for the surface charge that deleteriously affects the electrical properties of GaN. The physics and chemistry of this NO2 adsorption, reported here, may open a new path in the search for passivation to improve GaN device reliability.

7.
J Colloid Interface Sci ; 678(Pt C): 1001-1011, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326161

RESUMO

HYPOTHESIS: Oilseeds use triacylglycerides as main energy source, and pack them into highly stable droplets (oleosomes) to facilitate the triacylglycerides' long-term storage in the aqueous cytosol. To prevent the coalescence of oleosomes, they are stabilized by a phospholipid monolayer and unique surfactant-shaped proteins, called oleosins. In this study, we use state-of-the-art interfacial techniques to reveal the function of each component at the oleosome interface. EXPERIMENTS: We created model oil-water interfaces with pure oleosins, phosphatidylcholines, or mixtures of both components (ratios of 3:1, 1:1, 1:3), and applied large oscillatory dilatational deformations (LAOD). The obtained rheological response was analyzed with general stress decomposition (GSD) to get insights into the role of phospholipids and oleosins on the mechanics of the interface. FINDINGS: Oleosins formed viscoelastic solid interfacial films due to network formation via in-plane interactions. Between adsorbed phosphatidylcholines, weak interactions were observed, suggesting the surface stress response upon dilatational deformations was dominated by density changes. In mixtures with 3:1 and 1:1 oleosin-to-phosphatidylcholine ratios, oleosins dominated the interfacial mechanics and formed a network, while phosphatidylcholines contributed to interfacial tension reduction. At higher phosphatidylcholine concentrations (1:3 oleosin-to-phosphatidylcholine), phosphatidylcholine dominated the interface, and no network formation occurred. Our findings improve the understanding of both components' role for oleosomes.


Assuntos
Fosfatidilcolinas , Fosfatidilcolinas/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Propriedades de Superfície , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Reologia , Tamanho da Partícula , Água/química
8.
J Colloid Interface Sci ; 678(Pt C): 1048-1063, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39332123

RESUMO

Switchable wettability potential in smart fibers is of paramount importance in various applications. Light-induced controllable changes in surface wettability have a significant role in this area. Herein, smart waterborne homopolymer, functional copolymer with different polarity and flexibility, and multi-functional terpolymer particles containing a time-dependent dual-responsive acrylated spiropyran, as a polymerizable monomer, were successfully synthesized through eco-friendly single-step emulsifier-free emulsion polymerization. Presence of 10 wt% of butyl acrylate and dimethylaminoethyl methacrylate relative to methylmethacrylate as functional comonomers decreased the Tg of the samples almost 20 ℃ and increased their polarity. The optical properties of the particles were investigated, and the UV-vis and fluorescence spectroscopy results showed that not only polarity and flexibility of the polymer chains may have a positive effect on improving the optical properties, but also the simultaneous presence of functional groups has a synergistic effect. The smart polymer particles with flexibility and polarity features exhibited higher absorption and emission compared to other samples. Inspired by these findings, multi-functional smart polymer fibers were prepared using the electrospinning method. The smart multi-functional electrospun fibers containing few-layer Ti3C2 MXenes were synthesized to improve the fibers' properties and change the surface wettability due to the hydrophilic functional groups of MXene. Field-emission scanning electron microscopy images displayed the successful preparation of few-layer MXenes. Smooth and bead-free fibers with bright red fluorescence emission under UV irradiation were shown using fluorescence microscopy. The study on the surface wettability of fibers revealed that UV and visible light irradiation induced reversible time-dependent changes in the wettability of the smart multi-functional MXene/polymer electrospun fibers from hydrophobic to hydrophilic, reaching a water contact angle of 10° from an initial water contact angle of 100° under UV light and also changing to superhydrophilic state with passing time. Upon visible light exposure, the fibers returned to their original state. Furthermore, the fibers demonstrated a high stability over five alternating cycles of UV and visible light irradiation. This study shows that the fabrication of time-dependent smart fibers, utilizing the flexibility and polarity in the presence of MXenes, significantly improves and controls surface wettability changes. The outstanding dynamically photo-switchable wettability of these fibers may offer exciting opportunities in various applications, especially in the separation of oil from water contaminants.

9.
J Colloid Interface Sci ; 678(Pt C): 1096-1111, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39341141

RESUMO

HYPOTHESIS: Asphaltenes are primary stabilizers in water-in-oil (W/O) emulsions that cause corrosion and fouling issues. In oil sands industry, oil/water separation processes are generally conducted at high temperatures. A high temperature is expected to impact the interactions between asphaltenes and emulsion breakers (EBs), consequently influencing demulsification performance. EXPERIMENTS: The adsorption and interactions of asphaltenes and a PEO-PPO type EB (Pluronic F68) at the oil-water interface were investigated at various temperatures, using tensiometer, quartz crystal microbalance with energy dissipation (QCM-D), and atomic force microscopy (AFM). The effect of temperature on EB's demulsification performance was explored through bottle tests. Additionally, demulsification mechanisms were studied using direct force measurements with the droplet probe AFM technique. FINDINGS: Dynamic interfacial tension and QCM-D results demonstrate that the PEO-PPO type EB exhibits higher interfacial activity than asphaltenes and can disrupt rigid asphaltene films at the oil-water interfaces. Elevated temperatures accelerate the displacement of adsorbed asphaltenes by EB molecules, leading to sparse interfacial films, rapid droplet coalescence, and improved demulsification efficiency (supported by AFM and bottle test results). This work provides valuable insights into interfacial interactions between asphaltenes and EB at different temperatures, enhancing the understanding of demulsification mechanisms and offering useful implications for the development of efficient EBs to enhance oil/water separation performance.

10.
J Colloid Interface Sci ; 678(Pt A): 322-333, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39208760

RESUMO

Surface nanobubbles have revealed a new mechanism of gas-liquid-solid interaction at the nanoscale; however, the nanobubble evolution on real substrates is still veiled, because the experimental observation of contact line motions at the nanoscale is too difficult. HYPOTHESIS: This study proposes a theoretical model to describe the dynamics and stability of nanobubbles on heterogeneous substrates. It simultaneously considers the diffusive equilibrium of the liquid-gas interface and the mechanical equilibrium at the contact line, and introduces a surface energy function to express the substrate's heterogeneity. VALIDATION: The present model unifies the nanoscale stability and the microscale instability of surface bubbles. The theoretical predictions are highly consistent to the nanobubble morphology on heterogeneous surfaces observed in experiments. As the nanobubbles grow, a lower Laplace pressure leads to weaker gas adsorption, and the mechanical equilibrium can eventually revert to the classical Young-Laplace equation above microscale. FINDINGS: The analysis results indicate that both the decrease in substrate surface energy and the increase in gas oversaturation are more conducive to the nucleation and growth of surface nanobubbles, leading to larger stable sizes. The larger surface energy barriers result in the stronger pinning, which is beneficial for achieving stability of the pinned bubbles. The present model is able to reproduce the continual behaviors of the three-phase contact line during the nanobubble evolution, e.g., "pinning, depinning, slipping and jumping" induced by the nanoscale defects.

11.
J Colloid Interface Sci ; 678(Pt A): 355-364, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39208763

RESUMO

HYPOTHESIS: The friction and interfacial nanostructure of a water-in-surface-active ionic liquid mixture, 1.6 M 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), can be tuned by applying potential on Au(111) and stainless steel. EXPERIMENTAL: Atomic force microscopy (AFM) was used to examine the friction and interfacial nanostructure of 1.6 M [BMIm][AOT] on Au(111) and stainless steel at different potentials. FINDINGS: Superlubricity (vanishing friction) is observed for both surfaces at OCP+1.0 V up to a surface-dependent critical normal force due to [AOT]- bilayers adsorbing strongly to the positively charged surface thus allowing AFM tip to slide over solution-facing hydrated anion charged groups. High-resolution AFM imaging reveals ripple-like features within near-surface layers, with the smallest amplitudes at OCP+1 V, indicating the highest structural stability and resistance to thermal fluctuations due to highly ordered boundary [AOT]- bilayers templating robust near-surface layers. Exceeding the critical normal force at OCP+1.0 V causes the AFM tip to penetrate the hydrated [AOT]- layer and slide over alkyl chains, increasing friction. At OCP and OCP-1.0 V, higher friction correlates with more pronounced ripples, attributed to the rougher templating [BMIm]+ boundary layer. Kinetic experiments show that switching from OCP-1.0 V to OCP+1.0 V achieves superlubricity within 15 s, enabling real-time friction control.

12.
J Colloid Interface Sci ; 678(Pt A): 447-457, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39213997

RESUMO

Developing efficient and cost-effective platinum-group metal-free (PGMF) catalysts for the oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. Among these catalysts, metal-nitrogen-carbon (MNC) materials, particularly cobalt single-atom catalysts (CoSANC), show promise as ORR electrocatalysts. However, their ORR activity is often hindered by strong hydroxyl (OH) adsorption on the Co sites. While the impact of strain engineering on MNC electrocatalysts has been minimally explored, recent studies suggest its potential to enhance catalytic performance and optimize intrinsic activity in traditional bulk catalysts. In this context, we investigate the effect of surface strain on CoSANC for ORR activity and correlate substrate-strain-induced geometric distortions with catalytic activity using experimental and theoretical methods. The findings suggest that the d-band center gap of spin states (Δεd) may be a preferred descriptor for predicting strain-dependent ORR performance in MNC catalysts. Leveraging CoSANC moiety placed on a substrate with an average size of 1.0 µm, we achieve performance comparable to that of commercial Pt/C catalysts when used as a cathode catalyst in zinc-air batteries. This investigation unveils the structure-function relationship of MNC electrocatalysts regarding strain engineering and provides valuable insights for future ORR activity design and enhancement.

13.
J Colloid Interface Sci ; 678(Pt A): 480-493, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39214000

RESUMO

Novel carbon xerogels doped with heteroatoms (O, N, S) were prepared by sol-gel polymerization of resorcinol with heterocyclic aldehydes containing them. All doped materials presented higher O-contents than the reference material prepared with formaldehyde, and significant S- or N-loadings in the corresponding samples. Carbon xerogels were micro-mesoporous and N-doping favoured the formation of mesopores. Their efficiency in the dynamic ethylene adsorption is presented as an interplay between porosity, surface chemistry and humidity. The surface hydrophilicity was also studied by water adsorption assays, a quick adsorption being favoured in microporous samples with hydrophilic O-groups. Breakthrough curves for ethylene adsorption were recorded in both dry and humid conditions and analysed according to the mass transference zone (MTZ). The material behaviour was correlated with the physicochemical properties, elucitating the mechanism of the simultaneous water/ethylene adsorption. The adsorption capacity depended linearly on the microporous characteristics of samples; however, MTZ parameters (efficiency of the column) varied linearly with the electronegativity of the dopant element. Both doping and humidity in the stream hindered the ethylene adsorption kinetic and capacity (up to 33% for N-doped material under humidity compared to undoped-material under dry conditions), due to reduced adsorbate-adsorbent interactions and the accessibility into narrow pores.

14.
J Colloid Interface Sci ; 678(Pt A): 532-539, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39214005

RESUMO

A comprehensive understanding of the enhancement mechanism of the substrate material is crucial to ensure the repeatability and functionality of SERS detection technology. Therefore, this study introduces a theoretical analysis method that integrates electromagnetic and chemical enhancement to achieve a comprehensive understanding of the SERS effect on the magnetic composite substrate. The visual model is employed in this study to comprehensively analyze and illustrate the electric field enhancement and optical effects of composite substrate materials. The study also elucidated the adsorption and charge transfer between the substrate material and target molecules. Based on this theory, Fe3O4@GO@Ag material was prepared and used to detect hydrophobic organic molecules such as polycyclic aromatic hydrocarbons (PAHs), with a concentration as low as 0.5 nM. This study comprehensively analyzed the SERS enhancement effect of the composite substrate for the first time, and prepared a magnetic composite substrate material for the detection of hydrophobic organic molecules, opening up a new avenue for theoretical guidance and experimental exploration in SERS detection and analysis.

15.
J Colloid Interface Sci ; 678(Pt A): 572-582, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39216385

RESUMO

Cobalt (Co)-free lithium (Li)-rich layered oxides (LLOs) have emerged as promising cathode materials for the next generation of Li-ion batteries, attributed to their competitive market positioning and high energy density. Nevertheless, challenges arise from surface oxygen loss due to irreversible anionic redox reactions, leading to severe voltage and capacity decay that hinder the large-scale adoption of LLOs. Herein, we present an innovative, facile, and environmentally friendly hydrothermal approach to induce surface reconstruction of Li1.2Mn0.6Ni0.2O2 material. A multifaceted combination involving the spinel phase, oxygen vacancies, and reduced manganese is orchestrated to alleviate the irreversible oxygen redox and impressively enhance Li-ion diffusion. The modified sample, owing to this surface transition, demonstrates low-strain and low-distortion properties along with a substantial improvement in structural stability, supported by both experimental validations and theoretical studies. As a result, the engineered sample exhibits exceptional capacity retention of 97.12% after 150 cycles at 1C, with an ultra-low voltage decay (0.91 mV cycle-1). Additionally, noteworthy enhancements in initial coulombic efficiency and rate performance are also observed. This straightforward surface defect engineering method offers a pathway to developing "low-strain" LLOs with superior electrochemical performance, thereby laying a solid foundation for future commercial applications.

16.
J Colloid Interface Sci ; 678(Pt A): 970-978, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39226837

RESUMO

Designing highly effective, low-cost bifunctional electrocatalysts without noble metals for overall water splitting remains a significant challenge. In this work, interfacial coupling of Ce-doped CoSe2 nanoneedle arrays with MXene (Ce-CoSe2/MXene) is developed via the facile hydrothermal and selenization methods. The extensive specific surface area and favorable hydrophilicity of Ti3AlC2, combined with the optimized electronic structure and abundant active sites from Ce-doping and selenization, contribute to the exceptional bifunctional electrocatalytic performance of the Ce-CoSe2/MXene electrode. Specifically, this heterostructure achieves a low hydrogen evolution reaction (HER) overpotential of 34 mV at 10 mA cm-2, an oxygen evolution reaction (OER) overpotential of 279 mV at 100 mA cm-2, and an overall water splitting (OWS) potential as low as 1.45 V at 10 mA cm-2. In-situ Raman spectroscopy reveals that surface reconstruction would improve catalytic activity and stability. Theoretical calculations indicate that the Ce-CoSe2/MXene can improve the adsorption of intermediates and facilitate HER/OER process by lowering the kinetic barrier, thereby enhancing electrocatalytic activity. This research marks a substantial advancement in the development of low-cost, efficient electrocatalysts for overall water splitting.

17.
J Colloid Interface Sci ; 678(Pt B): 67-75, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39241448

RESUMO

The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63µmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.

18.
J Colloid Interface Sci ; 678(Pt B): 808-827, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270383

RESUMO

HYPOTHESIS: Electrostatic interactions between colloids are governed by the overlap of their electric double layers (EDLs) and the ionic screening of the structural charges distributed at their core surface and/or in their peripheral ion-permeable shell, relevant to soft particles like polymer colloids and microorganisms. Whereas ion size-mediated effects on the organization of isolated EDLs have been analysed, their contribution to the electrostatic energy of interacting soft particles has received less attention THEORY AND SIMULATIONS: Herein, we elaborate a formalism to evaluate the electrostatic interaction energy profile between spherical core/shell particles, building upon a recent Poisson-Boltzmann theory corrected for the sizes of ions and particle structural charges, for ion correlations and dielectric decrement. Interaction energy is derived from pairwise disjoining pressure and exact Surface Element Integration method, beyond the Derjaguin approximation. The theory is sufficiently flexible to tackle homo- and hetero-interactions that involve weakly to highly charged hard, porous or core/shell nano- to micro-sized particles in asymmetric multivalent electrolytes. FINDINGS: Results illustrate how ion steric effects, ion correlations and dielectric decrement impact the sign, magnitude and range of the interactions depending on the particle size, the Debye length, and the geometric and electrostatic properties of the particle core and shell components.

19.
J Colloid Interface Sci ; 678(Pt B): 992-1003, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39270399

RESUMO

Despite significant progress in low-temperature methane (CH4) activation, commercial viability, specifically obtaining high yields of C1/C2 products, remains a challenge. High desorption energy (>2 eV) and overoxidation of the target products are key limitations in CH4 utilization. Herein, we employ first-principles density functional theory (DFT) and microkinetics simulations to investigate the CH4 activation and the feasibility of its conversion to ethylene (C2H4) on the RuO2 (1 1 0) surface. The CH activation and CH4 dehydrogenation processes are thoroughly investigated, with a particular focus on the diffusion of surface intermediates. The results show that the RuO2 (1 1 0) surface exhibits high reactivity in CH4 activation (Ea = 0.60 eV), with CH3 and CH2 are the predominant species, and CH2 being the most mobile intermediate on the surface. Consequently, self-coupling of CH2* species via CC coupling occurs more readily, yielding C2H4, a potential raw material for the chemical industry. More importantly, we demonstrate that the produced C2H4 can easily desorb under mild conditions due to its low desorption energy of 0.97 eV. Microkinetic simulations based on the DFT energetics indicate that CH4 activation can occur at temperatures below 200 K, and C2H4 can be desorbed at room temperature. Further, the selectivity analysis predicts that C2H4 is the major product at low temperatures (300-450 K) with 100 % selectivity, then competes with formaldehyde at intermediate temperatures in the CH4 conversion over RuO2 (1 1 0) surface. The present findings suggest that the RuO2 (1 1 0) surface is a potential catalyst for facilitating ethylene production under mild conditions.

20.
Talanta ; 281: 126813, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39255621

RESUMO

Surface Enhanced Raman Scattering (SERS) has been extensively utilized in therapeutic drug monitoring (TDM) due to its rapid detection speed, high sensitivity and straightforward sample pretreatment. In this study, Au/AgNPs were obtained through the reduction of AgNO3 on the surface of AuNPs. Subsequently, Au/AgNPs were embedded into the tetrahedral lattice of ZIF-8 MOFs, resulting in the formation of Au/Ag@ZIF-8 nanocomposites. The Au/Ag@ZIF-8 nanocomposites exhibit a robust electromagnetic enhancement of Au/Ag bimetallic nanoparticles and a considerable adsorption capacity of ZIF-8 MOFs. This enables the pre-enrichment of target molecules in the vicinity of the electromagnetic field of the Au/AgNPs, thereby enhancing the sensitivity of SERS detection. The SERS substrate also exhibits high stability and reproducibility, as well as molecular sieving effects, due to the fact that Au/AgNPs are embedded into the tetrahedral lattice of ZIF-8. A TDM method for tacrolimus (FK506) in human serum was developed by using Au/Ag@ZIF-8 nanocomposites as solid phase extraction (SPE) adsorbent and SERS substrates. The results showed that under the optimized conditions, tacrolimus exhibited satisfactory linearity within the concentration range of 10-5-10-11 mol L-1, with a correlation coefficient (R2) of 0.9944, and the limit of detection (LOD) was as low as 6.4 pg mL-1. The recoveries were observed to range between 92 % and 105 %, with an RSD of below 8 %. The method is highly sensitive, exhibiting a sensitivity that is 3-6 orders of magnitude higher than that of existing analytical techniques. It has the potential to be applied in a clinical setting to biological samples.


Assuntos
Monitoramento de Medicamentos , Ouro , Estruturas Metalorgânicas , Nanocompostos , Prata , Extração em Fase Sólida , Análise Espectral Raman , Tacrolimo , Humanos , Prata/química , Ouro/química , Análise Espectral Raman/métodos , Extração em Fase Sólida/métodos , Nanocompostos/química , Tacrolimo/sangue , Tacrolimo/química , Adsorção , Monitoramento de Medicamentos/métodos , Estruturas Metalorgânicas/química , Limite de Detecção , Nanopartículas Metálicas/química , Zeolitas/química , Imidazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA