RESUMO
BACKGROUND: In liver tissue engineering, co-culturing hepatocytes with typical non-parenchymal hepatic cells to form cell aggregates is available to mimic the in vivo microenvironment and promote cell biological functions. With a modular assembly approach, endothelialized hepatic cell aggregates can be packed for perfusion culture, which enables the construction of large-scale liver tissues. Since tightly packed aggregates tend to fuse with each other and block perfusion flows, a loosely packed mode was introduced in our study. METHODS: Using an oxygen-permeable polydimethylsiloxane (PDMS)-based microwell device, highly dense endothelialized hepatic cell aggregates were generated as hepatic tissue elements by co-culturing hepatocellular carcinoma (HepG2) cells, Swiss 3T3 cells, and human umbilical vein endothelial cells (HUVECs). The co-cultured aggregates were then harvested and applied in a PDMS-fabricated bioreactor for 10 days of perfusion culture. To maintain appropriate interstitial spaces for stable perfusion, biodegradable poly-L-lactic acid (PLLA) scaffold fibers were used and mixed with the aggregates, forming a loosely packed mode. RESULTS: In a microwell co-culture, Swiss 3T3 cells significantly contributed to the formation of hepatic cell aggregates. HUVECs developed a peripheral distribution in aggregates for endothelialization. In the perfusion culture, compared with pure HepG2 aggregates, HepG2/Swiss 3T3/HUVECs co-cultured aggregates exhibited a higher level of cell proliferation and liver-specific function expression (i.e., glucose consumption and albumin secretion). Under the loosely packed mode, co-cultured aggregates showed a characteristic histological morphology with cell migration and adhesion to fibers. The assembled hepatic tissue elements were obtained with 32% of in vivo cell density. CONCLUSIONS: In a co-culture of HepG2, Swiss 3T3, and HUVECs, Swiss 3T3 cells were observed to be beneficial for the formation of endothelialized hepatic cell aggregates. Loosely packed aggregates enabled long-term perfusion culture with high viability and biological function. This study will guide us in constructing large-scale liver tissue models by way of aggregate-based modular assembly.
RESUMO
Feeder cell functionality following growth-arrest with the cost-effective Mitomycin C vis-à-vis irradiation is controversial due to several methodological variables reported. Earlier, we demonstrated variability in growth arrested Swiss 3T3 feeder cell life-span following titration of feeder cell densities with Mitomycin C concentrations which led to the derivation of doses per cell. Alternatively, to counter the unexpected feeder regrowth at high exposure cell density, we proposed titration of a fixed density with arithmetically derived volumes of Mitomycin C solution that corresponded to permutations of specific concentrations and doses per cell. We now describe an experimental procedure of inducing differential feeder cell growth-arrest by titrating with such volumes and validating the best feeder batch through target cell growth assessment. A safe cell density of Swiss 3T3 tested for the exclusion of Mitomycin C resistant variants was titrated with a range of volumes of a Mitomycin C solution. The differentially growth-arrested feeder batches generated were tested for short-term and long-term viability and human epidermal keratinocyte growth supporting ability. The feeder cell extinction rate was directly proportional to the volume of Mitomycin C solution within a given concentration per se. The keratinocyte colony forming efficiency and the overall growth in mass cultures were maximal with a median extinction rate produced by an intermediate volume, while the faster and slower extinction rates by high and low volumes, respectively, were suboptimal. The described method could counter the inadequacies of growth-arrest with Mitomycin C.
RESUMO
INTRODUCTION: Growth-arrested feeder cells following Mitomycin C treatment are instrumental in stem cell culture allowing development of regenerative strategies and alternatives to animal testing in drug discovery. The concentration of Mitomycin C and feeder cell type was described to affect feeder performance but the criticality of feeder cell exposure density was not addressed. We hypothesize that the exposure cell density influences the effectiveness of Mitomycin C in an arithmetic manner. METHODS: Three different exposure cell densities of Swiss 3T3 fibroblasts were treated with a range of Mitomycin C concentrations for 2h. The cells were replaced and the viable cells counted on 3, 6, 9, 12 and 20days. The cell extinctions were compared with doses per cell which were derived by dividing the product of concentration and volume of Mitomycin C solution with exposure cell number. RESULTS: The periodic post-treatment feeder cell extinctions were not just dependent on Mitomycin C concentration but also on dose per cell. Analysis of linearity between viable cell number and Mitomycin C dose per cell derived from the concentrations of 3 to 10µg/ml revealed four distinct categories of growth-arrest. Confluent cultures exposed to low concentration showed growth-arrest failure. DISCUSSION: The in vitro cell density titration can facilitate prediction of a compound's operational in vivo dosing. For containing the growth arrest failure, an arithmetic volume derivation strategy is proposed by fixing the exposure density to a safe limit. The feeder extinction characteristics are critical for streamlining the stem cell based pharmacological and toxicological assays.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Técnicas de Cultura de Células/métodos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Alimentadoras/efeitos dos fármacos , Mitomicina/toxicidade , Células-Tronco/efeitos dos fármacos , Animais , Contagem de Células , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Camundongos , Estimulação QuímicaRESUMO
BACKGROUND: Chitosan, a linear polysaccharide, has been recently used in biomedical applications. In vitro studies have demonstrated its effect on cellular growth and its stimulatory action on cellular layer formation. AIMS: The present study aims to compare the proliferative effects of chitosan in two forms, membranous and solution forms, on Swiss 3T3 mouse embryonic fibroblasts. STUDY DESIGN: In vitro study. METHODS: Three experimental groups were formed: cells were cultured in a normal medium without chitosan (Control Group); cells were cultured either in a medium containing 2.0% chitosan in membranous form (Membrane Group) or chitosan solution at a concentration of 2.0% (Solution Group). Two different methods were used in the experiments: cells cultured on the medium containing chitosan in solution or membranous forms (method 1); and chitosan solution or membranous forms were added into the medium containing previously cultured cells (method 2). RESULTS: Scanning electron microscopic investigations of the experimental groups revealed cells with well-defined cellular projections, intact cellular membranes and tight intercellular junctions. They were especially prominent in the membrane group of method 1 and in the membrane and solution groups of method 2. Mouse monoclonal anti-collagen 1 primary antibody was used to indicate collagen synthesis. Prominent collagen synthesis was detected in the membrane groups on the 10(th) day of culture for both methods. Bromodeoxyuridine (BrdU) and MTT assays were performed in order to assess cellular proliferation and viability, respectively. BrdU labelling tests indicated a higher proliferation index in the membrane group of method 1 on the 5(th) and 10(th) days. For the second method, the membranous form on the 10(th) day and solution form on the 5(th) day were the most effective groups in terms of cellular proliferation. MTT results reflected a high cellular viability in method 1 on the 5(th) day of treatment with the membranous form, whereas cellular viability was highest in the solution form of method 2 on the 5(th) day. CONCLUSION: The membranous form of chitosan induced a significant proliferative effect and increased the ratio of cell-to-cell junctions of Swiss 3T3 mouse embryonic fibroblasts. Conveniently, the solution form also resulted in enhanced cell proliferation and viability compared to the control group. As the solution form is easy to prepare and apply to cells compared to the membrane form, the application of Chitosan directly to media appears to be a convenient alternative for tissue engineering approaches.
RESUMO
When Swiss 3T3 fibroblasts were exposed to bisphenol A (BPA) or nonylphenol (NP) within a range of 0.1-100 nM for 30-45 days, increased resistance to oxidative injury was found. Western blot analysis indicated concomitant increased expression of bcl-2 protein and reduced histone methylation levels in cells after BPA or NP exposure. Using a heterologous expression system, both chemicals could stimulate G protein-coupled receptor 30 (GPR30), a transmembrane estrogen receptor predominantly expressed in 3T3 cells, at lower concentrations, which gave increased survival. Taken together, these results suggest that BPA or NP exposure might cause alterations in cellular activity against oxidative stress, possibly through GPR30.