Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Transl Res ; 265: 26-35, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37914149

RESUMO

Lynch syndrome, an autosomal dominant hereditary disease arising from mutations in mismatch repair genes, is linked to the development of multiple tumor types, notably colorectal cancer, endometrial carcinoma and upper urinary tract urothelial carcinoma. In this study, we present the case of a young patient diagnosed with upper urinary tract urothelial carcinoma, notable for a familial history of diverse malignancies. By employing genetic analysis, we verified the presence of Lynch syndrome within the family and detected novel variants, MSH2 p.A604D and TSC2 p.C738Y, utilizing NGS technology. Subsequently, we conducted validation experiments to assess the pathogenicity of the MSH2 and TSC2 variants. We illustrated that the MSH2 variant can result in diminished MSH2 expression, compromised mismatch repair function, and induce resistance to cisplatin in urothelial carcinoma. Furthermore, we substantiated the promotional impact of the identified TSC2 variant on urothelial carcinoma, encompassing proliferation, invasion, and migration. Significantly, we found that the MSH2 p.A604D variant and TSC2 p.C738Y variant synergistically enhance the promotion of urothelial carcinoma.


Assuntos
Carcinoma de Células de Transição , Neoplasias Colorretais Hereditárias sem Polipose , Neoplasias Renais , Neoplasias da Bexiga Urinária , Humanos , Carcinoma de Células de Transição/genética , China , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Proteína 2 Homóloga a MutS/genética , Neoplasias da Bexiga Urinária/genética
2.
Small ; 20(10): e2306140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875718

RESUMO

The shuttle effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely hinder the scalable application of lithium-sulfurr (Li-S) batteries. Herein, the highly dispersed α-phase molybdenum carbide nano-crystallites embedded in a porous nitrogen-doped carbon framework (α-MoC1-x @NCF) are developed via a simple metal-organic frameworks (MOFs) assisted strategy and proposed as the multifunctional separator interlayer for Li-S batteries. The inlaid MoC1-x nanocrystals and in situ doped nitrogen atoms provide a strong chemisorption and outstanding electrocatalytic conversion toward LiPSs, whereas the unique plum-like carbon framework with hierarchical porosity enables fast electron/Li+ transfer and can physically suppress LiPSs shuttling. Benefiting from the synergistic trapping-catalyzing effect of the MoC1-x @NCF interlayer toward LiPSs, the assembled Li-S battery achieves high discharge capacities (1588.1 mAh g-1 at 0.1 C), impressive rate capability (655.8 mAh g-1 at 4.0 C) and ultra-stable lifespan (a low capacity decay of 0.059% per cycle over 650 cycles at 1.0 C). Even at an elevated sulfur loading (6.0 mg cm-2 ) and lean electrolyte (E/S is ≈5.8 µL mg-1 ), the battery can still achieve a superb areal capacity of 5.2 mAh cm-2 . This work affords an effective design strategy for the construction of muti-functional interlayer in advanced Li-S batteries.

3.
Cancer Lett ; 526: 322-334, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767926

RESUMO

The relationship between microRNA (miRNA) and hosting long non-coding RNA (lncRNA) remains unclear. Here, the expression levels of microRNA-210 (miR-210) and hosting lncRNA MIR210HG are significantly increased and positively correlated in gastric cancer (GC). Gain- and loss-of-function studies demonstrate that miR-210 and MIR210HG synergistically promote the migration and invasion of GC cells in vitro. Furthermore, GC sublines simultaneously expressing miR-210 and MIR210HG display synergistic promotion of lung metastasis in vivo. Mechanistically, MIR210HG interacts with DExH-box helicase 9 (DHX9) to increase DHX9/c-Jun complex's occupancy on the promoter of matrix metallopeptidases (MMPs), and thus promotes migration and invasion of GC cells. Additionally, miR-210 directly suppresses the expression of dopamine receptor D5 (DRD5), serine/threonine kinase 24 (STK24) and MAX network transcriptional repressor (MNT), resulting in enhanced migration and invasion. Finally, MYC proto-oncogene (c-Myc) transactivates miR-210 and MIR210HG. Overexpression of miR-210 or/and MIR210HG can rescue the inhibitory effect on the migration and invasion by silencing c-Myc. Moreover, c-Myc inhibitor significantly decreases lung metastasis of GC in vivo. Collectively, our findings identify a novel mechanism, by which c-Myc-activated miR-210 and MIR210HG synergistically promote the metastasis of GC.


Assuntos
MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Feminino , Genes myc , Xenoenxertos , Humanos , Íntrons , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/metabolismo , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
4.
Clin Sci (Lond) ; 135(14): 1751-1765, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34282832

RESUMO

Epigenetic dysregulation has long been identified as a key driver of leukemogenesis in acute myeloid leukemia (AML). However, epigenetic drugs such as histone deacetylase inhibitors (HDACis) targeting epigenetic alterations in AML have obtained only limited clinical efficiency without clear mechanism. Fortunately, we screened out a novel epigenetic agent named Apigenin-Vorinostat-Conjugate (AVC), which provides us a possibility to handle the heterogeneous malignancy. Its inhibition on HDACs was presented by HDACs expression, enzyme activity, and histone acetylation level. Its efficacy against AML was detected by cell viability assay and tumor progression of AML mouse model. Apoptosis is the major way causing cell death. We found that AVC efficiently suppresses leukemogenesis while sparing the normal human cells. Kasumi-1 cells are at least 20-fold higher sensitive to AVC (IC50 = 0.024 µM) than vorinostat (IC50 = 0.513 µM) and Ara-C (IC50 = 0.4366 µM). Furthermore, it can efficiently regress the tumorigenesis in AML mouse model while keeping the pivotal organs safe, demonstrating a feasibility and favorable safety profile in treatment of AML. Collectively, these preclinical data suggest a promising potential utilizing flavonoid-HDACi-conjugate as a next-generation epigenetic drug for clinical therapy against AML.


Assuntos
Epigênese Genética/efeitos dos fármacos , Flavonoides/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Histona Desacetilases/efeitos dos fármacos , Histona Desacetilases/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos
5.
Adv Mater ; 33(26): e2100746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998706

RESUMO

Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on ß-amyloid (Aß) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aß phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aß burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Biomimética , Dendrímeros , Camundongos , Microglia , Neurônios/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
6.
Expert Opin Drug Metab Toxicol ; 15(2): 167-177, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30582378

RESUMO

INTRODUCTION: Glycyrrhizae Radix et Rhizoma (Gancao in Chinese) is the most frequently used traditional Chinese medicine (TCM) owing to its various pharmacological effects and, more importantly, the synergistic effects that enhance the efficacy and reduce the toxicity of other TCMs. Areas covered: We reviewed publications, predominantly between 1990 and 2018, that examined pharmacokinetic interactions between Gancao and other TCMs, or the bioactive constituents of these TCMs. This review focuses on the underlying mechanisms and the components responsible for the pharmacokinetic modulation by Gancao. Expert opinion: In general, the pharmacokinetic effects of Gancao are a result of its constituents such as macromolecules, like proteins, and small molecules, such as saponins and flavonoids. The mechanisms are related to formation of complexes and the influence of these on drug solubility, permeability, distribution, and metabolism. The detoxification effect of a single dose of Gancao is mainly mediated by the suppression of the intestinal absorption of toxic constituents of the co-administered TCMs and is attributable to constituents that form complexes with the toxic compounds and cause them to sediment. In contrast, the detoxification effects of repeated doses of Gancao are mediated mainly via the induction of drug metabolizing enzymes and efflux transporters.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Glycyrrhiza/química , Extratos Vegetais/administração & dosagem , Animais , Interações Medicamentosas , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Enzimas/efeitos dos fármacos , Enzimas/metabolismo , Humanos , Absorção Intestinal , Medicina Tradicional Chinesa/efeitos adversos , Medicina Tradicional Chinesa/métodos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA