Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Neuropharmacology ; 258: 110059, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992791

RESUMO

Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-µA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.

2.
Biochem Pharmacol ; 222: 116096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423188

RESUMO

Calcium channel blockers (CCBs) are commonly used as antihypertensive agents. While certain L-type CCBs exhibit antiatherogenic effects, the impact of Cav3.1 T-type CCBs on antiatherogenesis and lipid metabolism remains unexplored. NNC 55-0396 (NNC) is a highly selective blocker of T-type calcium channels (Cav3.1 channels). We investigated the effects of NNC on relevant molecules and molecular mechanisms in human THP-1 macrophages. Cholesterol efflux, an indicator of reverse cholesterol transport (RCT) efficiency, was assessed using [3H]-labeled cholesterol. In vivo, high cholesterol diet (HCD)-fed LDL receptor knockout (Ldlr-/-) mice, an atherosclerosis-prone model, underwent histochemical staining to analyze plaque burden. Treatment of THP-1 macrophages with NNC facilitated cholesterol efflux and reduced intracellular cholesterol accumulation. Pharmacological and genetic interventions demonstrated that NNC treatment or Cav3.1 knockdown significantly enhanced the protein expression of scavenger receptor B1 (SR-B1), ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and liver X receptor alpha (LXRα) transcription factor. Mechanistic analysis revealed that NNC activates p38 and c-Jun N-terminal kinase (JNK) phosphorylation, leading to increased expression of ABCA1, ABCG1, and LXRα-without involving the microRNA pathway. LXRα isrequired for NNC-induced ABCA1 and ABCG1 expression. Administering NNC diminished atherosclerotic lesion area and lipid deposition in HCD-fed Ldlr-/- mice. NNC's anti-atherosclerotic effects, achieved through enhanced cholesterol efflux and inhibition of lipid accumulation, suggest a promising therapeutic approach for hypertensive patients with atherosclerosis. This research highlights the potential of Cav3.1 T-type CCBs in addressing cardiovascular complications associated with hypertension.


Assuntos
Aterosclerose , Benzimidazóis , Ciclopropanos , Hipercolesterolemia , Naftalenos , Humanos , Animais , Camundongos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Receptores X do Fígado/metabolismo , Colesterol/metabolismo , Hipercolesterolemia/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
3.
Acta Physiol (Oxf) ; 240(2): e14075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38071417

RESUMO

AIM: Bradyarrhythmias result from inhibition of automaticity, prolonged repolarization, or slow conduction in the heart. The ERG channels mediate the repolarizing current IKr in the cardiac action potential, whereas T-type calcium channels (TTCC) are involved in the sinoatrial pacemaker and atrioventricular conduction in mammals. Zebrafish have become a valuable research model for human cardiac electrophysiology and disease. Here, we investigate the contribution of ERG channels and TTCCs to the pacemaker and atrioventricular conduction in zebrafish larvae and determine the mechanisms causing atrioventricular block. METHODS: Zebrafish larvae expressing ratiometric fluorescent Ca2+ biosensors in the heart were used to measure Ca2+ levels and rhythm in beating hearts in vivo, concurrently with contraction and hemodynamics. The atrioventricular delay (the time between the start of atrial and ventricular Ca2+ transients) was used to measure impulse conduction velocity and distinguished between slow conduction and prolonged refractoriness as the cause of the conduction block. RESULTS: ERG blockers caused bradycardia and atrioventricular block by prolonging the refractory period in the atrioventricular canal and in working ventricular myocytes. In contrast, inhibition of TTCCs caused bradycardia and second-degree block (Mobitz type I) by slowing atrioventricular conduction. TTCC block did not affect ventricular contractility, despite being highly expressed in cardiomyocytes. Concomitant measurement of Ca2+ levels and ventricular size showed mechano-mechanical coupling: increased preload resulted in a stronger heart contraction in vivo. CONCLUSION: ERG channels and TTCCs influence the heart rate and atrioventricular conduction in zebrafish larvae. The zebrafish lines expressing Ca2+ biosensors in the heart allow us to investigate physiological feedback mechanisms and complex arrhythmias.


Assuntos
Bloqueio Atrioventricular , Canais de Cálcio Tipo T , Marca-Passo Artificial , Humanos , Animais , Peixe-Zebra , Frequência Cardíaca/fisiologia , Bradicardia , Canais de Cálcio Tipo T/fisiologia , Canais de Potássio Éter-A-Go-Go , Miócitos Cardíacos , Mamíferos , Regulador Transcricional ERG
4.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958418

RESUMO

BACKGROUND: We investigated whether cell cycle synchronization induced by the T-type calcium channel inhibitor mibefradil could increase tumoral 2-[18F] fluoro-2-deoxy-d-glucose (FDG) uptake in vitro and in vivo. METHODS: Human prostate cancer cells (PC-3) were treated with 10 µM mibefradil for 24, 48, and 72 h to induce G1 arrest. Cell cycle distribution was analyzed at 0, 4, 8, 12, 15, 18, and 24 h after mibefradil withdrawal. Cellular uptake was measured after incubating cells with [3H] Deoxy-d-Glucose (DDG) for 1 h at the same time points used in the cell cycle analysis. The correlation between [3H] DDG uptake and each cell cycle phase was evaluated in the early (0-12 h) and late phases (15-24 h) of synchronization. In vivo FDG PET imaging was performed in PC-3-bearing mice at baseline, 24 h, and 48 h after mibefradil treatment. RESULTS: The G0/G1 fraction of PC-3 cells was significantly increased from 33.1% ± 0.2% to 60.9% ± 0.8% after 24 h mibefradil treatment, whereas the S and G2/M fractions were decreased from 36.3% ± 1.4% to 23.2% ± 1.1% and from 29.7% ± 1.3% to 14.9% ± 0.9%, respectively, which were similar to the results by serum starvation. Mibefradil treatment for 24, 48, and 72 h increased the number of cells in S phase at 18-24 h after withdrawal; however, only the 72 h treatment increased [3H] DDG uptake (145.8 ± 5.8% of control at 24 h after withdrawal). [3H] DDG uptake was positively correlated with the size of the S phase fraction and negatively correlated with the size of the G0/G1 fraction in the late phase of synchronization. DDG uptake was significantly increased by mibefradil-induced cell cycle synchronization and correlated with the sizes of cell cycle fractions. In vivo FDG PET imaging also demonstrated a significant increase in tumor uptake after mibefradil treatment. Quantified tumor FDG uptake (%ID/g) increased from 4.13 ± 2.10 to 4.7 ± 2.16 at 24 h, and 5.95 ± 2.57 at 48 h (p < 0.05). CONCLUSION: Cell cycle synchronization could be used to increase the diagnostic sensitivity of clinical FDG positron emission tomography.

5.
Biomedicines ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001892

RESUMO

The Cav3.2 T-type calcium channel is implicated in various pathological conditions, including cardiac hypertrophy, epilepsy, autism, and chronic pain. Phosphorylation of Cav3.2 by multiple kinases plays a pivotal role in regulating its calcium channel function. The calcium/calmodulin-dependent serine/threonine phosphatase, calcineurin, interacts physically with Cav3.2 and modulates its activity. However, it remains unclear whether calcineurin dephosphorylates Cav3.2, the specific spatial regions on Cav3.2 involved, and the extent of the quantitative impact. In this study, we elucidated the serine/threonine residues on Cav3.2 targeted by calcineurin using quantitative mass spectrometry. We identified six serine residues in the N-terminus, II-III loop, and C-terminus of Cav3.2 that were dephosphorylated by calcineurin. Notably, a higher level of dephosphorylation was observed in the Cav3.2 C-terminus, where calcineurin binds to this channel. Additionally, a previously known CaMKII-phosphorylated site, S1198, was found to be dephosphorylated by calcineurin. Furthermore, we also discovered that a novel CaMKII-phosphorylated site, S2137, underwent dephosphorylation by calcineurin. In CAD cells, a mouse central nervous system cell line, membrane depolarization led to an increase in the phosphorylation of endogenous Cav3.2 at S2137. Mutation of S2137 affected the calcium channel function of Cav3.2. Our findings advance the understanding of Cav3.2 regulation not only through kinase phosphorylation but also via calcineurin phosphatase dephosphorylation.

6.
Biol Pharm Bull ; 46(9): 1343-1346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661413

RESUMO

Cav3.2 channels belong to the T-type calcium channel (T-channel) family, i.e., low voltage-activated calcium channels, and are abundantly expressed in the nociceptors, playing a principal role in the development of pathological pain. The channel activity of Cav3.2 is suppressed by zinc under physiological conditions. We thus tested whether dietary zinc deficiency would cause Cav3.2-dependent nociceptive hypersensitivity in mice. In the mice fed with zinc deficient diet for 2 weeks, plasma zinc levels declined by more than half, and mechanical allodynia developed. The dietary zinc deficiency-induced allodynia was restored by T-channel inhibitors or by Cav3.2 gene silencing. These data demonstrate that zinc deficiency induces Cav3.2-dependent nociceptive hypersensitivity in mice, thereby suggesting that pain experienced by patients with diseases accompanied by zinc deficiency (e.g., chronic kidney disease) might involve the increased Cav3.2 activity.


Assuntos
Canais de Cálcio Tipo T , Hipersensibilidade , Desnutrição , Animais , Camundongos , Nociceptividade , Zinco , Hiperalgesia/etiologia , Dor
7.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240147

RESUMO

Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Humanos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sistema Cardiovascular/metabolismo , Sistemas do Segundo Mensageiro , Bloqueadores dos Canais de Cálcio/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Homeostase
8.
J Pharmacol Sci ; 152(2): 86-89, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169483

RESUMO

Cav3.2, a T-type calcium channel (T-channel) family member, is expressed in the nociceptors and spinal cord, and its activity is largely suppressed by zinc under physiological conditions. In rats, intrathecal and intraplantar administration of a zinc chelator, TPEN, caused T-channel-dependent mechanical hyperalgesia, and the intraplantar, but not intrathecal, TPEN induced Cav3.2 upregulation in the dorsal root ganglion. In mice, intraplantar TPEN also caused mechanical allodynia, which was abolished by T-channel inhibitors or Cav3.2 gene deletion. Together, spinal and peripheral zinc deficiency appears to enhance Cav3.2 activity in the spinal postsynaptic neurons and nociceptors, respectively, thereby promoting pain.


Assuntos
Canais de Cálcio Tipo T , Hiperalgesia , Ratos , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Roedores , Quelantes , Zinco , Canais de Cálcio Tipo T/genética , Gânglios Espinais
9.
Metallomics ; 15(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37193665

RESUMO

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary ß-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC). Our findings indicate that ZnT1 increases TTCC activity by enhancing the trafficking of the channel to the plasma membrane. LTCC and TTCC are co-expressed in many tissues and have different functions in a variety of tissues. In the current work, we investigated the effect of the voltage-gated calcium channel (VGCC) ß-subunit and ZnT1 on the crosstalk between LTCC and TTCC and their functions. Our results indicate that the ß-subunit inhibits the ZnT1-induced augmentation of TTCC function. This inhibition correlates with the VGCC ß-subunit-dependent reduction in ZnT1-induced activation of Ras-ERK signaling. The effect of ZnT1 is specific, as the presence of the ß-subunit did not change the effect of endothelin-1 (ET-1) on TTCC surface expression. These findings document a novel regulatory function of ZnT1 serving as a mediator in the crosstalk between TTCC and LTCC. Overall, we demonstrate that ZnT1 binds and regulates the activity of the ß-subunit of VGCC and Raf-1 kinase and modulates surface expression of the LTCC and TTCC catalytic subunits, consequently modulating the activity of these channels.


Assuntos
Canais de Cálcio Tipo L , Canais de Cálcio Tipo T , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Xenopus
10.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986438

RESUMO

Renin-angiotensin system (RAS) inhibitors and calcium channel blockers (CCB) are often used together in chronic kidney disease (CKD). The PubMed, EMBASE, and Cochrane Library databases were searched to identify randomized controlled trials (RCTs) in order to explore better subtypes of CCB for the treatment of CKD. This meta-analysis of 12 RCTs with 967 CKD patients who were treated with RAS inhibitors demonstrated that, when compared with L-type CCB, N-/T-type CCB was superior in reducing urine albumin/protein excretion (SMD, -0.41; 95% CI, -0.64 to -0.18; p < 0.001) and aldosterone, without influencing serum creatinine (WMD, -3.64; 95% CI, -11.63 to 4.35; p = 0.37), glomerular filtration rate (SMD, 0.06; 95% CI, -0.13 to 0.25; p = 0.53), and adverse effects (RR, 0.95; 95% CI, 0.35 to 2.58; p = 0.93). In addition, N-/T-type CCB did not decrease the systolic blood pressure (BP) (WMD, 0.17; 95% CI, -1.05 to 1.39; p = 0.79) or diastolic BP (WMD, 0.64; 95% CI, -0.55 to 1.83; p = 0.29) when compared with L-type CCB. In CKD patients treated with RAS inhibitors, N-/T-type CCB is more effective than L-type CCB in reducing urine albumin/protein excretion without increased serum creatinine, decreased glomerular filtration rate, and increased adverse effects. The additional benefit is independent of BP and may be associated with decreased aldosterone (PROSPERO, CRD42020197560).

11.
Bioorg Chem ; 135: 106493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996509

RESUMO

Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.


Assuntos
Alcaloides , Antineoplásicos , Buxus , Canais de Cálcio Tipo T , Alcaloides/farmacologia , Analgésicos/farmacologia , Buxus/química
12.
J Reprod Dev ; 69(2): 87-94, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36754390

RESUMO

Uterine peristalsis is essential for gamete transport and embryo implantation. It shares the characteristics of spontaneity, rhythmicity, and directivity with gastrointestinal peristalsis. Telocytes, the "interstitial Cajal-like cells" outside the digestive canal, are also located in the uterus and may act as pacemakers. To investigate the possible origin and regulatory mechanism of periodic uterine peristalsis in the human menstrual cycle, telocytes in the myometrium were studied to determine the effect of estradiol on T-type calcium channel regulation. In this study, biopsies of the human myometrium were obtained for cell culture, and double-labeling immunofluorescence screening was used to identify telocytes and T-type calcium channel expression. Intracellular calcium signal measurements and patch-clamp recordings were used to investigate the role of T-type calcium channels in regulating calcium currents with or without estradiol. Our study demonstrates that telocytes exist in the human uterus and express T-type calcium channels. The intracellular Ca2+ fluorescence intensity marked by Fluo-4AM was dramatically decreased by NNC 55-0396, a highly selective T-type calcium channel blocker, but enhanced by estradiol. T-type calcium current amplitude increased in telocytes incubated with estradiol in a dose-dependent manner compared to the control group. In conclusion, our study demonstrated that telocytes exist in the human myometrium, expressing T-type calcium channels and estradiol-enhanced T-type calcium currents, which may be a reasonable explanation for the origin of uterine peristalsis. The role of telocytes in the human uterus as pacemakers and message transfer stations in uterine peristalsis may be worth further investigation.


Assuntos
Canais de Cálcio Tipo T , Telócitos , Feminino , Humanos , Miométrio/metabolismo , Miométrio/patologia , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/farmacologia , Estradiol/farmacologia , Estradiol/metabolismo , Cálcio/metabolismo , Telócitos/metabolismo , Telócitos/patologia
13.
Br J Pharmacol ; 180(12): 1616-1633, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647671

RESUMO

BACKGROUND AND PURPOSE: Cannabinoids are a promising therapeutic avenue for chronic pain. However, clinical trials often fail to report analgesic efficacy of cannabinoids. Inhibition of voltage gate calcium (Cav ) channels is one mechanism through which cannabinoids may produce analgesia. We hypothesized that cannabinoids and cannabinoid receptor agonists target different types of Cav channels through distinct mechanisms. EXPERIMENTAL APPROACH: Electrophysiological recordings from tsA-201 cells expressing either Cav 3.2 or Cav 2.2 were used to assess inhibition by HU-210 or cannabidiol (CBD) in the absence and presence of the CB1 receptor. Homology modelling assessed potential interaction sites for CBD in both Cav 2.2 and Cav 3.2. Analgesic effects of CBD were assessed in mouse models of inflammatory and neuropathic pain. KEY RESULTS: HU-210 (1 µM) inhibited Cav 2.2 function in the presence of CB1 receptor but had no effect on Cav 3.2 regardless of co-expression of CB1 receptor. By contrast, CBD (3 µM) produced no inhibition of Cav 2.2 and instead inhibited Cav 3.2 independently of CB1 receptors. Homology modelling supported these findings, indicating that CBD binds to and occludes the pore of Cav 3.2, but not Cav 2.2. Intrathecal CBD alleviated thermal and mechanical hypersensitivity in both male and female mice, and this effect was absent in Cav 3.2 null mice. CONCLUSION AND IMPLICATIONS: Our findings reveal differential modulation of Cav 2.2 and Cav 3.2 channels by CB1 receptors and CBD. This advances our understanding of how different cannabinoids produce analgesia through action at different voltage-gated calcium channels and could influence the development of novel cannabinoid-based therapeutics for treatment of chronic pain.


Assuntos
Canabidiol , Canabinoides , Dor Crônica , Masculino , Feminino , Camundongos , Animais , Canabidiol/farmacologia , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
14.
Cell Biol Toxicol ; 39(3): 679-702, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34286406

RESUMO

Vincristine (VCR), an alkaloid isolated from vinca, is a commonly used chemotherapeutic drug. However, VCR therapy can lead to dose-dependent peripheral neurotoxicity, mainly manifesting as neuropathic pain, which is one of the dominant reasons for limiting its utility. Experimentally, we discovered that VCR-induced neuropathic pain (VINP) was accompanied by astrocyte activation; the upregulation of phospho-CaMKII (p-CaMKII), CaV3.2, and Connexin-43 (Cx43) expression; and the production and release of inflammatory cytokines and chemokines in the spinal cord. Similar situations were also observed in astrocyte cultures. Interestingly, these alterations were all reversed by intrathecal injection of KN-93 (a CaMKII inhibitor) or L-Ascorbic acid (a CaV3.2 inhibitor). In addition, KN-93 and L-Ascorbic acid inhibited the increase in [Ca2+]i associated with astrocyte activation. We also verified that knocking down or inhibiting Cx43 level via intrathecal injection of Cx43 siRNA or Gap27 (a Cx43 mimetic peptide) relieved pain hypersensitivity and reduced the release of inflammatory factors; however, they did not affect astrocyte activation or p-CaMKII and CaV3.2 expression. Besides, the overexpression of Cx43 through the transfection of the Cx43 plasmid did not affect p-CaMKII and CaV3.2 expressions in vitro. Therefore, CaMKII and CaV3.2 may activate astrocytes by increasing [Ca2+]i, thereby mediating Cx43-dependent inflammation in VINP. Moreover, we demonstrated that the CaMKII signalling pathway was involved in VCR-induced inflammation, apoptosis, and mitochondrial damage. Collectively, our findings show a novel mechanism by which CaMKII and CaV3.2 mediate Cx43-dependent inflammation by activating astrocytes in neuropathic pain induced by VCR.


Assuntos
Canais de Cálcio Tipo T , Neuralgia , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Vincristina/farmacologia , Vincristina/metabolismo , Vincristina/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo T/uso terapêutico , Astrócitos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/uso terapêutico , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
15.
Redox Biol ; 59: 102579, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36563535

RESUMO

Poly-trans-[(2-carboxyethyl)germasesquioxane] (Ge-132), an organogermanium, is hydrolyzed to 3-(trihydroxygermyl)propanoic acid (THGP) in aqueous solutions, and reduces inflammation, pain and cancer, whereas the underlying mechanisms remain unknown. Sulfides including H2S, a gasotransmitter, generated from l-cysteine by some enzymes including cystathionine-γ-lyase (CSE), are pro-nociceptive, since they enhance Cav3.2 T-type Ca2+ channel activity expressed in the primary afferents, most probably by canceling the channel inhibition by Zn2+ linked via coordinate bonding to His191 of Cav3.2. Given that germanium is reactive to sulfur, we tested whether THGP would directly trap sulfide, and inhibit sulfide-induced enhancement of Cav3.2 activity and sulfide-dependent pain in mice. Using mass spectrometry and 1H NMR techniques, we demonstrated that THGP directly reacted with sulfides including Na2S and NaSH, and formed a sulfur-containing reaction product, which decreased in the presence of ZnCl2. In Cav3.2-transfected HEK293 cells, THGP inhibited the sulfide-induced enhancement of T-type Ca2+ channel-dependent membrane currents. In mice, THGP, administered systemically or locally, inhibited the mechanical allodynia caused by intraplantar Na2S. In the mice with cyclophosphamide-induced cystitis and cerulein-induced pancreatitis, which exhibited upregulation of CSE in the bladder and pancreas, respectively, systemic administration of THGP as well as a selective T-type Ca2+ channel inhibitor suppressed the cystitis-related and pancreatitis-related visceral pain. These data suggest that THGP traps sulfide and inhibits sulfide-induced enhancement of Cav3.2 activity, leading to suppression of Cav3.2-dependent pain caused by sulfide applied exogenously and generated endogenously.


Assuntos
Canais de Cálcio Tipo T , Cistite , Sulfeto de Hidrogênio , Pancreatite , Dor Visceral , Camundongos , Humanos , Animais , Células HEK293 , Canais de Cálcio Tipo T/fisiologia , Sulfetos/farmacologia , Cistite/induzido quimicamente , Sulfeto de Hidrogênio/metabolismo
16.
Cytokine ; 161: 156079, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372008

RESUMO

The pro-inflammatory cytokine IL-6 has been associated with the progression of PCa to a castration-resistant phenotype. In this work, we characterized the biochemical changes evoked by IL-6 in three different models of PCa cells, including LNCaP, C4-2, and PC3. The effect of IL-6 on PCa cells was compared with the effect obtained by co-stimulation with the cAMP-inducing agent forskolin (FSK). Stimulation of LNCaP cells with IL-6 or IL-6 + FSK evoked increased expression of the neuroendocrine marker tubulin IIIß and Cav3.2 T-type Ca2+ channel subunit. PC3 cells, representing a more advanced state of PCa, had high levels of tubulin IIIß expression without any further changes observed by treatment with IL-6 or IL-6 + FSK. Elevated expression of the glucocorticoid receptor was observed in PC3, but not in LNCaP or C4-2 cells. Glucocorticoid receptor expression was not regulated by IL-6 stimulation of LNCaP or C4-2 cells. IL-6 acting alone or together with FSK evoked a significant reduction in the expression of the transcription factor REST and retinoblastoma tumor suppressor protein Rb1. In LNCaP cells, IL-6 acting alone or together with FSK had no effect on the expression of several biological markers of advanced PCa, including Aurora kinase A, valosin-containing protein, calcium-sensing receptor, calreticulin, S100A protein, and Protein S. In PC3 cells, co-treatment with IL-6 + FSK evoked increased expression of REST and S100A proteins, as well as a reduction in Protein S levels. These findings reveal a complex pattern of biochemical changes in PCa cells under the influence of IL-6.


Assuntos
Interleucina-6 , Neoplasias da Próstata , Humanos , Masculino , Interleucina-6/farmacologia , Linhagem Celular Tumoral , Receptores de Glucocorticoides , Tubulina (Proteína) , Neoplasias da Próstata/patologia
17.
Biochim Biophys Acta Biomembr ; 1864(12): 184046, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36096197

RESUMO

The outstanding work of several eminent biophysicists has allowed the functional features of voltage-gated tetrameric ion channels to be disclosed using ingenious and sophisticated electrophysiological techniques. However, the kinetics and mechanism underlying these functions have been heavily conditioned by an arbitrary interpretation of the groundbreaking results obtained by Hodgkin and Huxley (HH) in their investigation of sodium and potassium currents using the voltage clamp technique. Thus, the heavy parametrization of their results was considered to indicate that any proposed sequence of closed states terminates with a single open state. This 'dogma' of HH parametrization has influenced the formulation of countless mechanistic models, mainly stochastic, requiring a high number of free parameters and of often unspecified conformational states. This note aims to point out the advantages of a deterministic kinetic model that simulates the main features of tetrameric ion channels using only two free parameters by assuming their stepwise opening accompanied by a progressively increasing cation flow. This model exploits the electrostatic attractive interactions stemming from the charge distribution shared by all tetrameric ion channels, providing a close connection between their structure and function. Quite significantly, a stepwise opening of all ligand-gated tetrameric ion channels, such as glutamate receptors (GluRs), with concomitant ion flow, is nowadays generally accepted, not having been influenced by this dogma. This provides a unified picture of both voltage-gated and ligand-gated tetrameric ion channels.


Assuntos
Canais Iônicos , Potássio , Cátions , Ligantes , Sódio
18.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077291

RESUMO

The role of T-type calcium channels is well established in excitable cells, where they preside over action potential generation, automaticity, and firing. They also contribute to intracellular calcium signaling, cell cycle progression, and cell fate; and, in this sense, they emerge as key regulators also in non-excitable cells. In particular, their expression may be considered a prognostic factor in cancer. Almost all cancer cells express T-type calcium channels to the point that it has been considered a pharmacological target; but, as the drugs used to reduce their expression are not completely selective, several complications develop, especially within the heart. T-type calcium channels are also involved in a specific side effect of several anticancer agents, that act on microtubule transport, increase the expression of the channel, and, thus, the excitability of sensory neurons, and make the patient more sensitive to pain. This review puts into context the relevance of T-type calcium channels in cancer and in chemotherapy side effects, considering also the cardiotoxicity induced by new classes of antineoplastic molecules.


Assuntos
Canais de Cálcio Tipo T , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Humanos , Mibefradil/farmacologia
19.
Front Neurosci ; 16: 909999, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003960

RESUMO

A number of studies point to slow (0.1-2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.

20.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(7): 1032-1037, 2022 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-35869766

RESUMO

OBJECTIVE: To observe the effect of mibefradil on skeletal muscle mass, function and structure in obese mice. METHODS: Fifteen 6-week-old C57BL/6 mice were randomized equally into normal diet group (control group), high-fat diet (HFD) group and high-fat diet +mibefradil intervention group (HFD +Mibe group). The grip strength of the mice was measured using an electronic grip strength meter, and the muscle content of the hindlimb was analyzed by X-ray absorptiometry (DXA). Triglyceride (TG) and total cholesterol (TC) levels of the mice were measured with GPO-PAP method. The cross-sectional area of the muscle fibers was observed with HE staining. The changes in the level of autophagy in the muscles were detected by Western blotting and immunofluorescence assay, and the activation of the Akt/mTOR signaling pathway was detected with Western blotting. RESULTS: Compared with those in the control group, the mice in HFD group had a significantly greater body weight, lower relative grip strength, smaller average cross sectional area of the muscle fibers, and a lower hindlimb muscle ratio (P < 0.05). Immunofluorescence assay revealed a homogenous distribution of LC3 emitting light red fluorescence in the cytoplasm in the muscle cells in HFD group and HFD+Mibe group, while bright spots of red fluorescence were detected in HFD group. In HFD group, the muscular tissues of the mice showed an increased expression level of LC3 II protein with lowered expressions of p62 protein and phosphorylated AKT and mTOR (P < 0.05). Mibefradil treatment significantly reduced body weight of the mice, lowered the expression level of p62 protein, and increased forelimb grip strength, hindlimb muscle ratio, cross-sectional area of the muscle fibers, and the expression levels of LC3 II protein and phosphorylated AKT and mTOR (P < 0.05). CONCLUSION: Mibefradil treatment can moderate high-fat diet-induced weight gain and improve muscle mass and function in obese mice possibly by activating AKT/mTOR signal pathway to improve lipid metabolism and inhibit obesityinduced autophagy.


Assuntos
Dieta Hiperlipídica , Proteínas Proto-Oncogênicas c-akt , Animais , Peso Corporal , Mibefradil/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA