RESUMO
The translocation between chromosomes 1 and 19 t(1;19) produces the TCF3::PBX1 fusion protein, which leads to childhood pre-B-cell acute lymphoblastic leukemia (ALL). The molecular mechanism of oncogenesis, however, remains obscure. This study aims to identify the genes specifically dysregulated in TCF3::PBX1 translocation. The publicly available expression microarray datasets on ALL were used for weighted gene co-expression network analysis (WGCNA) to identify modules associated with TCF3::PBX1. The available knockdown and ChIP-Seq datasets were used to assess the direct targets of TCF3::PBX1. The WGCNA revealed a module enriched in genes involved in the metal ion stress to be positively correlated with TCF3::PBX1, with metallothionein isoform MT1 subtypes MT1E, MT1F, MT1G, MT1H, and MT1X as the hub genes. Of the 145 positively correlated genes, 19 were downregulated upon TCF3::PBX1 knockdown. Eleven of these 19 genes including MT1G, showed TCF3::PBX1 occupancy at the promoter. The Metallothionein 1 family has been implicated in various cancers; however, their role in t(1;19) pre-B-cell ALL has not been previously demonstrated. Our analysis effectively accounts for the cellular and population-level heterogeneity and identifies a novel mechanism for the TCF3::PBX1 action.
RESUMO
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
RESUMO
Transcription factor 3 (TCF3), a pivotal member of the TCF/LEF family, plays a critical role in tumorigenesis. Nonetheless, its impact on the tumor microenvironment (TME) and cancer phenotypes remains elusive. We perform an exhaustive analysis of TCF3 expression, DNA variation profiles, prognostic implications, and associations with the TME and immunological aspects. This study is based on a large-scale pan-cancer cohort, encompassing over 17,000 cancer patients from multiple independent datasets, validated by in vitro assays. Our results show that TCF3/4/7 exhibits differential expression patterns between normal and tumor tissues across pan-cancer analyses. Mutational analysis of TCF3 across diverse cancer types reveals the highest alteration rates in biliary tract cancer. Additionally, mutations and single nucleotide variants in TCF3/4/7 are found to exert varied effects on patient prognosis. Importantly, TCF3 emerges as a robust predictor of survival across all cancer cohorts and among patients receiving immune checkpoint inhibitors. Elevated TCF3 expression is correlated with more aggressive cancer subtypes, as validated by immunohistochemistry and diverse cohort data. Furthermore, TCF3 expression is positively correlated with intratumoral heterogeneity and angiogenesis. In vitro investigations demonstrate that TCF3 is involved in epithelial-mesenchymal transition, migration, invasion, and angiogenesis. These effects are likely mediated through the interaction of TCF3 with the NF-κB/MMP2 pathway, which is modulated by IL-17A in human uveal melanoma MUM2B cells. This study elucidates, for the first time, the significant associations of TCF3 with DNA variation profiles, prognostic outcomes, and the TME in multiple cancer contexts. TCF3 holds promise as a molecular marker for diagnosis and as a potential target for novel therapeutic strategies, particularly in uveal melanoma.
RESUMO
Pro-B- and pre-B-cells are consecutive entities in early B-cell development, representing cells of origin for B-cell precursor acute lymphoid leukemia (BCP-ALL). Normal B-cell differentiation is critically regulated by specific transcription factors (TFs). Accordingly, TF-encoding genes are frequently deregulated or mutated in BCP-ALL. Recently, we described TF-codes which delineate physiological activities of selected groups of TF-encoding genes in hematopoiesis including B-cell development. Here, we exploited these codes to uncover regulatory connections between particular TFs in pro-B- and pre-B-cells via an analysis of developmental TFs encoded by NKL and TALE homeobox genes and by ETS and T-box genes. Comprehensive expression analyses in BCP-ALL cell lines helped identify validated models to study their mutual regulation in vitro. Knockdown and overexpression experiments and subsequent RNA quantification of TF-encoding genes in selected model cell lines revealed activating, inhibitory or absent connections between nine TFs operating in early B-cell development, including HLX, MSX1, IRX1, MEIS1, ETS2, ERG, SPIB, EOMES, and TBX21. In addition, genomic profiling revealed BCP-ALL subtype-specific copy number alterations of ERG at 21q22, while a deletion of the TGFbeta-receptor gene TGFBR2 at 3p24 resulted in an upregulation of EOMES. Finally, we combined the data to uncover gene regulatory networks which control normal differentiation of early B-cells, collectively endorsing more detailed evaluation of BCP-ALL subtypes.
Assuntos
Diferenciação Celular , Redes Reguladoras de Genes , Células Precursoras de Linfócitos B , Fatores de Transcrição , Humanos , Diferenciação Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Linhagem Celular Tumoral , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Regulação Leucêmica da Expressão GênicaRESUMO
PURPOSE: Transcription factor 3 (TCF3) encodes 2 transcription factors generated by alternative splicing, E12 and E47, which contribute to early lymphocyte differentiation. In humans, autosomal dominant (AD) E47 transcription factor deficiency is an inborn error of immunity characterized by B-cell deficiency and agammaglobulinemia. Only the recurrent de novo p.E555K pathogenic variant has been associated with this disease and acts via a dominant-negative (DN) mechanism. In this study, we describe the first Asian patient with agammaglobulinemia caused by the TCF3 p.E555K variant and provide insights into the structure and function of this variant. METHODS: TCF3 variant was identified by inborn errors of immunity-related gene panel sequencing. The variant E555K was characterized by alanine scanning of the E47 basic region and comprehensive mutational analysis focused on position 555. RESULTS: The patient was a 25-year-old male with B-cell deficiency, agammaglobulinemia, and mild facial dysmorphic features. We confirmed the diagnosis of AD E47 transcription factor deficiency by identifying a heterozygous missense variant, c.1663 G>A; p.E555K, in TCF3. Alanine scanning of the E47 basic region revealed the structural importance of position 555. Comprehensive mutational analysis focused on position 555 showed that only the glutamate-to-lysine substitution had a strong DN effect. 3D modeling demonstrated that this variant not only abolished hydrogen bonds involved in proteinâDNA interactions, but also inverted the charge on the surface of the E47 protein. CONCLUSIONS: Our study reveals the causative mutation hotspot in the TCF3 DN variant and highlights the weak negative selection associated with the TCF3 gene.
Assuntos
Agamaglobulinemia , Humanos , Masculino , Adulto , Agamaglobulinemia/genética , Agamaglobulinemia/diagnóstico , Linfócitos B/imunologia , Genes Dominantes , Análise Mutacional de DNA , Mutação de Sentido Incorreto/genética , Mutação/genética , Linhagem , Predisposição Genética para Doença , Modelos Moleculares , Fatores de Transcrição Hélice-Alça-Hélice BásicosRESUMO
BACKGROUND: The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored. METHODS: In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured via Quantitative Real-Time PCR (qRT-PCR) and western blot assays. Cell Counting Kit 8 (CCK-8) and Flow cytometry assays were used to evaluate the activity of TBI cells. In addition, we assessed the effect of inhibiting SENP5 in vivo on neurological function deficits and apoptosis in the hippocampal tissues of TBI rats. The relationship between SENP5 and NEDD4L/TCF3 axis was proved via immunoprecipitation (IP) and double luciferase assays. RESULTS: Following TBI cell modeling, an increase in SENP5 expression has been found. Moreover, TBI modeling resulted in reduced cell viability and increased apoptosis, which was rescue by inhibition of SENP5. In vivo experiments demonstrated that SENP5 inhibition could mitigate TBI-induced brain injury in rats. Specifically, this inhibition led to lower neurological impairment scores, improved neuronal morphology and structure, and decreased neuronal apoptosis. In addition, NEDD4L has been proved to be relevant to the enhanced stability of the transcription factor TCF3, which in turn promoted the expression of SENP5. CONCLUSIONS: This study reveals that inhibiting SENP5 can alleviate brain injury following TBI. NEDD4L/TCF3 axis can regulate the expression of SENP5 to affect the development of TBI. However, SENP5 regulates downstream targets of TBI and important mechanisms need to be further explored.
RESUMO
The use of next-generation sequencing (NGS) for monitoring measurable residual disease (MRD) in acute lymphoblastic leukaemia (ALL) has been gaining traction. This study aimed to investigate the utility of NGS in MRD monitoring for the three major fusion transcript (FT) subtypes of B-precursor ALL (B-ALL). The MRD results for 104 bone marrow samples from 56 patients were analysed through NGS and real time quantitative reverse transcription PCR (RT-qPCR) for the three major FTs: BCR::ABL1, TCF3::PBX1, and ETV6::RUNX1. To validate the NGS approach, NGS-MRD was initially compared with allele-specific oligonucleotide-qPCR-MRD, and the coefficient of determination was good (R2=0.8158). A subsequent comparison of NGS-MRD with FT-MRD yielded a good coefficient of determination (R2=0.7690), but the coefficient varied by subtype. Specifically, the R2 was excellent for TCF3::PBX1 ALL (R2=0.9157), good for ETV6::RUNX1 ALL (R2=0.8606), and subpar for BCR::ABL1 ALL (R2=0.5763). The overall concordance between the two methods was 83.7%, and an excellent concordance rate of 95.8% was achieved for TCF3::PBX1 ALL. Major discordance, which was defined as a >1 log difference between discordant NGS-MRD and FT-MRD, occurred in 6.7% of the samples, with all but one sample being BCR::ABL1 ALL. Among the four non-transplanted patients with BCR::ABL1-MRD (+)/NGS-MRD (-), three did not relapse after long-term follow-up. Our finding indicates that NGS-MRD has a better prognostic impact than RT-qPCR-MRD in ETV6::RUNX1 and BCR::ABL1 ALL, whereas in TCF3::PBX1 ALL, both methods exhibit comparable efficacy.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasia Residual , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Neoplasia Residual/genética , Neoplasia Residual/diagnóstico , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Feminino , Masculino , Adolescente , Adulto , Criança , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas de Fusão bcr-abl/genéticaRESUMO
Significant heterogeneity has been reported in outcome of Acute lymphoblastic leukemia with t(1;19)(q23;p13)/TCF3::PBX1 in adolescents and adults leading to a lack of consensus on precise risk stratification. We evaluated clinical outcome of 17 adult ALL cases (≥15 years) with this genotype treated on intensive regimes.13/17 received COG0232 and 4/17 cases received UK-ALL protocol. All achieved CR (100%) with above treatment. End of induction MRD was evaluated in 14/17 cases of which 11 (78.5%) achieved MRD negativity. Total nine patients relapsed (7 marrows, 2 CNS). Overall survival at 2 years was 53.3%. The 2 year estimated PFS was 42.9%. The 2 years CIR was 54.2%. Adults with this genotype perform poorly despite early favorable response. Incorporation of novel immunotherapies and prompt HSCT should be strongly considered with this genotype. Targeted NGS panels for additional genetic aberrations can further help in risk stratifying and guiding therapy for this genotype.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Masculino , Adulto , Feminino , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Translocação Genética , Cromossomos Humanos Par 19/genética , Taxa de Sobrevida , Prognóstico , Resultado do TratamentoRESUMO
Objective: To investigate the regulatory mechanism of EP300 in the interaction between SLC16A1-AS1 and TCF3 to activate the Wnt pathway, thereby promoting malignant progression in lung cancer. Methods: In lung cancer cell lines, SLC16A1-AS1 was knocked down, and the impact of this knockdown on the malignant progression of lung cancer cells was assessed through clonogenic assays, Transwell assays, and apoptosis experiments. The regulatory relationship between EP300 and SLC16A1-AS1 was investigated through bioinformatic analysis and ChIP experiments. The expression of SLC16A1-AS1 and TCF3 in 56 paired lung cancer tissues was examined using RT-qPCR, and their correlation was analyzed. The interaction between TCF3 and SLC16A1-AS1 was explored through bioinformatic analysis and CoIP experiments. Activation of the Wnt/ß-catenin pathway was assessed by detecting the accumulation of ß-catenin in the nucleus through Western blotting. The role of EP300 in regulating the effect of SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling on lung cancer malignant progression was validated through in vitro and in vivo experiments. Results: SLC16A1-AS1 is highly expressed in lung cancer and regulates its malignant progression. EP300 mediates histone modifications on the SLC16A1-AS1 promoter, thus controlling its expression. SLC16A1-AS1 exhibits specific interactions with TCF3, and the SLC16A1-AS1/TCF3 complex activates the Wnt/ß-catenin pathway. EP300 plays a critical role in regulating the impact of SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling on lung cancer malignant progression. Conclusion: EP300 regulates the SLC16A1-AS1/TCF3-mediated Wnt/ß-catenin signaling pathway, influencing the malignant progression of lung cancer.
RESUMO
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
RESUMO
Exploring the mechanism of self-renewal and pluripotency maintenance of human embryonic stem cells (hESCs) is of great significance in basic research and clinical applications, but it has not been fully elucidated. Long non-coding RNAs (lncRNAs) have been shown to play a key role in the self-renewal and pluripotency maintenance of hESCs. We previously reported that the lncRNA ESRG, which is highly expressed in undifferentiated hESCs, can maintain the self-renewal and pluripotency of hPSCs. RNA pull-down mass spectrometry showed that ESRG could bind to other proteins, among which heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) attracted our attention. In this study, we showed that HNRNPA1 can maintain self-renewal and pluripotency of hESCs. ESRG bound to and stabilized HNRNPA1 protein through the ubiquitin-proteasome pathway. In addition, knockdown of ESRG or HNRNPA1 resulted in alternative splicing of TCF3, which originally and primarily encoded E12, to mainly encode E47 and inhibit CDH1 expression. HNRNPA1 could rescue the biological function changes of hESCs caused by ESRG knockdown or overexpression. Our results suggest that ESRG regulates the alternative splicing of TCF3 to affect CDH1 expression and maintain hESCs self-renewal and pluripotency by binding and stabilizing HNRNPA1 protein. This study lays a good foundation for exploring the new molecular regulatory mechanism by which ESRG maintains hESCs self-renewal and pluripotency.
Assuntos
Processamento Alternativo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Autorrenovação Celular , Células-Tronco Embrionárias Humanas , Células-Tronco Pluripotentes , Humanos , Processamento Alternativo/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Autorrenovação Celular/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/genética , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoAssuntos
Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Masculino , Criança , Feminino , Diploide , Hibridização in Situ FluorescenteRESUMO
Transcription factor 3 (TCF3) is a DNA transcription factor that modulates megakaryocyte development. Although abnormal TCF3 expression has been identified in a range of hematological malignancies, to date, it has not been investigated in myelofibrosis (MF). MF is a Philadelphia-negative myeloproliferative neoplasm (MPN) that can arise de novo or progress from essential thrombocythemia [ET] and polycythemia vera [PV] and where dysfunctional megakaryocytes have a role in driving the fibrotic progression. We aimed to examine whether TCF3 is dysregulated in megakaryocytes in MPN, and specifically in MF. We first assessed TCF3 protein expression in megakaryocytes using an immunohistochemical approach analyses and showed that TCF3 was reduced in MF compared with ET and PV. Further, the TCF3-negative megakaryocytes were primarily located near trabecular bone and had the typical "MF-like" morphology as described by the WHO. Genomic analysis of isolated megakaryocytes showed three mutations, all predicted to result in a loss of function, in patients with MF; none were seen in megakaryocytes isolated from ET or PV marrow samples. We then progressed to transcriptomic sequencing of platelets which showed loss of TCF3 in MF. These proteomic, genomic and transcriptomic analyses appear to indicate that TCF3 is downregulated in megakaryocytes in MF. This infers aberrations in megakaryopoiesis occur in this progressive phase of MPN. Further exploration of this pathway could provide insights into TCF3 and the evolution of fibrosis and potentially lead to new preventative therapeutic targets.
What is the context? We investigated TCF3 (transcription factor 3), a gene that regulates megakaryocyte development, for genomic and proteomic changes in myelofibrosis.Myelofibrosis is the aggressive phase of a group of blood cancers called myeloproliferative neoplasms, and abnormalities in development and maturation of megakaryocytes is thought to drive the development of myelofibrosis.What is new? We report detection of three novel TCF3 mutations in megakaryocytes and decreases in TCF3 protein and gene expression in primary megakaryocytes and platelets from patients with myelofibrosis.This is the first association between loss of TCF3 in megakaryocytes from patients and myelofibrosis.What is the impact? TCF3 dysregulation may be a novel mechanism that is responsible for the development of myelofibrosis and better understanding of this pathway could identify new drug targets.
Assuntos
Megacariócitos , Mielofibrose Primária , Fator 3 de Transcrição , Humanos , Medula Óssea/patologia , Megacariócitos/metabolismo , Policitemia Vera/genética , Policitemia Vera/metabolismo , Policitemia Vera/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Proteômica , Trombocitemia Essencial/patologia , Fator 3 de Transcrição/metabolismoRESUMO
Childhood B-cell acute lymphoblastic leukemia (B-ALL) is a heterogeneous disease comprising multiple molecular subgroups with subtype-specific expression profiles. Recently, a new type of ncRNA, termed circular RNA (circRNA), has emerged as a promising biomarker in cancer, but little is known about their role in childhood B-ALL. Here, through RNA-seq analysis in 105 childhood B-ALL patients comprising six genetic subtypes and seven B-cell controls from two independent cohorts we demonstrated that circRNAs properly stratified B-ALL subtypes. By differential expression analysis of each subtype vs. controls, 156 overexpressed and 134 underexpressed circRNAs were identified consistently in at least one subtype, most of them with subtype-specific expression. TCF3::PBX1 subtype was the one with the highest number of unique and overexpressed circRNAs, and the circRNA signature could effectively discriminate new patients with TCF3::PBX1 subtype from others. Our results indicated that NUDT21, an RNA-binding protein (RBP) involved in circRNA biogenesis, may contribute to this circRNA enrichment in TCF3::PBX1 ALL. Further functional characterization using the CRISPR-Cas13d system demonstrated that circBARD1, overexpressed in TCF3::PBX1 patients and regulated by NUDT21, might be involved in leukemogenesis through the activation of p38 via hsa-miR-153-5p. Our results suggest that circRNAs could play a role in the pathogenesis of childhood B-ALL.
Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Circular , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Circular/genéticaRESUMO
Germline genetic variants influence development of pediatric B cell acute lymphoblastic leukemia (B-ALL). Genome-wide association studies (GWAS) have identified several pediatric B-ALL susceptibility loci. IKZF1 and PAX5, transcription factors involved in B cell development, have been reported as susceptibility genes for B-ALL development. Therefore, we hypothesized that rare variants of genes involved in B cell development would be candidate susceptibility loci for pediatric B-ALL. Thus, we sequenced TCF3, a key transcription factor gene involving in B cell development. Saliva DNA from 527 pediatric patients with pediatric B-ALL in remission who were registered with the Tokyo Children's Cancer Study Group (TCCSG) were examined. As a TCF3 gene-based evaluation, the numbers of rare deleterious germline TCF3 sequence variants in patients with pediatric B-ALL were compared with those in cancer-free individuals using data in public databases. As a TCF3 single-variant evaluation, the frequencies of rare deleterious germline TCF3 sequence variants in patients with pediatric B-ALL were also compared with those in control data. TCF3 gene-based analysis revealed significant associations between rare deleterious variants and pediatric B-ALL development. In addition, TCF3 variant-based analysis showed particularly strong association between variant rs372168347 (three in 521 TCCSG and three in the 15780 gnomAD whole genome analysis cohort, p = 0.0006) and pediatric B-ALL development. TCF3 variants are known to influence B cell maturation and may increase the risk of preleukemic clone emergence.
Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Criança , Humanos , Estudo de Associação Genômica Ampla , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genéticaRESUMO
OBJECTIVE: To explore the consistency of flow cytometry (FCM) method and polymerase chain reaction (PCR) technique in the detection of minimal residual disease (MRD) at different treatment stages in pediatric patients with TCF3/PBX1+ B-cell acute lymphoblastic leukemia (B-ALL) and the correlations between the detection results and prognosis. METHODS: The clinical data of 64 newly diagnosed pediatric patients with TCF3/PBX1+ B-ALL admitted to the Department of Pediatrics of Peking University People's Hospital from January 2005 to December 2017 were retrospectively analyzed. FCM and PCR methods were used to monitor the MRD level in bone marrow samples from 64 children during the same period of treatment on d33 and d90 respectively, and the detection results were analyzed. RESULTS: There were 37 males and 27 females in the 64 patients, with a median age of 8 years(range 0.8 to 16 years). The complete remission (CR) rate after the first cycle of induction chemotherapy was 98.4% (62/63), with overall CR rate of 100%. 12 patients experienced recurrence, with a median recurrence time of 16.9 (5.3-46.3) months. The median follow-up time of the 64 patients was 77.2 (1.0-184.8) months , and the 5-year overall survival (OS) rate and event-free survival (EFS) rate were 82.8%±4.7% and 75.0%±5.4%, respectively. On d90, the concordance rate of the MRD results from the two methods was 98.4%, and the related kappa value was 0.792 (P < 0.001), which were significantly higher than those on d33. After induction chemotherapy (d33), the 5-year EFS rate of MRD-FCM- group (79.3%±5.3%) was significantly better than that of MRD-FCM+ group (40.0%±21.9%) (P =0.028), there were no significant differences in the 5-year OS rate and EFS rate between MRD-PCR+ group and MRD-PCR- group, and the 5-year EFS rate of MRD-FCM-/PCR- group (85.4%±5.5%) was significantly better than that of MRD-FCM+/PCR+ group (40.0 %±21.9%) (P =0.026). CONCLUSION: In children with TCF3/PBX1+ B-ALL, the MRD results detected by FCM and PCR methods show good consistency, especially in consolidation therapy period (d90). The MRD level at the end of induction therapy (d33) is an important factor affecting the long-term prognosis, especially the MRD results detected by FCM method, which is significantly associated with prognosis.
Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Masculino , Feminino , Criança , Humanos , Lactente , Pré-Escolar , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasia Residual/diagnóstico , Relevância Clínica , Estudos Retrospectivos , Prognóstico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêuticoRESUMO
T helper type 9 (Th9) cells play important roles in immune responses by producing interleukin-9 (IL-9). Several transcription factors are responsible for Th9 cell differentiation; however, transcriptional regulation of Th9 cells is not fully understood. Here, it is shown that Id1 is an essential transcriptional regulator of Th9 cell differentiation. Id1 is induced by IL-4 and TGF-ß. Id1-deficient naïve CD4 T cells fail to differentiate into Th9 cells, and overexpression of Id1 induce expression of IL-9. Mass spectrometry analysis reveals that Id1 interacts with Tcf3 and Tcf4 in Th9 cells. In addition, RNA-sequencing, chromatin immunoprecipitation, and transient reporter assay reveal that Tcf3 and Tcf4 bind to the promoter region of the Il9 gene to suppress its expression, and that Id1 inhibits their function, leading to Th9 differentiation. Finally, Id1-deficient Th9 cells ameliorate airway inflammation in an animal model of asthma. Thus, Id1 is a transcription factor that plays an essential role in Th9 cell differentiation by inhibiting Tcf3 and Tcf4.
Assuntos
Interleucina-9 , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Interleucina-9/genética , Interleucina-9/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular/fisiologiaRESUMO
Transcription factor 3 (TCF3) is a member of the basic Helix - Loop - Helix (bHLH) transcription factor (TF) family and is encoded by the TCF3 gene (also known as E2A). It has been shown that TCF3 functions as a key transcription factor in the pathogenesis of several human cancers and plays an important role in stem cell maintenance and carcinogenesis. However, the effect of TCF3 in the progression of esophageal squamous cell carcinoma (ESCC) is poorly known. In our study, TCF3 was found to express highly and correlated with cancer stage and prognosis. TCF3 was shown to promote ESCC invasion, migration, and drug resistance both from the results of in vivo and in vitro assays. Moreover, further studies suggested that TCF3 played these roles through transcriptionally regulating Inhibitor of DNA binding 1(ID1). Notably, we also found that TCF3 or ID1 was associated with ESCC stemness. Furthermore, TCF3 was correlated with the expression of cancer stemness markers CD44 and CD133. Therefore, maintaining cancer stemness might be the underlying mechanism that TCF3 transcriptionally regulated ID1 and further promoted ESCC progression and drug resistance.