Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mar Pollut Bull ; 205: 116682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981190

RESUMO

In the marine environment, nanoparticles play a role in adsorbing and catalytically degrading organic pollutants, thereby mitigating their toxic effects on aquatic organisms. This study aimed to investigate the impact of nano titanium dioxide (nTiO2) and tris (2-chloropropyl) phosphate (TCPP) on the hemolymph and digestive function of the thick-shell mussel Mytilus coruscus. Mussels were divided into a control group, a group exposed to TCPP alone, a group exposed to a combination of TCPP and 0.5 mg/L nTiO2, and a group exposed to a combination of TCPP and 1 mg/L nTiO2. After 14 days of exposure, oxidative stress responses, including superoxide dismutase (SOD) activity and malondialdehyde (MDA) content, immune defense responses, including acid phosphatase (ACP) and alkaline phosphatase (AKP) activities, and gene expression, including HSP70 expression, were measured in the hemolymph and digestive glands of the mussels. Compared to the control group, mussels solely exposed to 100 µg/L TCPP exhibited a significant reduction in SOD activity in the hemolymph. When TCPP was co-exposed with 0.5 mg/L nTiO2, there were significant increases in MDA content and AKP activity in both the digestive gland and hemolymph compared to the control group. Upon co-exposure of TCPP with 1 mg/L nTiO2, MDA content and AKP activity in the digestive gland significantly decreased, while SOD, ACP, and AKP activity in the hemolymph significantly increased and MDA content significantly decreased, returning to the control group levels. Furthermore, in the combined exposure, HSP70 gene expression significantly decreased as the nTiO2 concentration increased from 0.5 mg/L to 1 mg/L. In summary, TCPP impacted the hemolymph and digestive function of mussels, whereas a concentration of 1 mg/L nTiO2 effectively alleviated the toxic effects of TCPP. This study is crucial for assessing the ecological risks of nanoparticles and emerging organic pollutants in marine environments, and provides new insights into the interaction between nTiO2 and TCPP, as well as the influence of nTiO2 concentration on mitigating TCPP toxicity.


Assuntos
Hemolinfa , Mytilus , Titânio , Poluentes Químicos da Água , Animais , Titânio/toxicidade , Mytilus/efeitos dos fármacos , Hemolinfa/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sistema Digestório/efeitos dos fármacos , Sistema Digestório/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Nanopartículas/toxicidade
2.
Biosensors (Basel) ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920580

RESUMO

Metal-organic frameworks (MOFs) are frequently utilized as sensing materials. Unfortunately, the low conductivity of MOFs hinder their further application in electrochemical determination. To overcome this limitation, a novel modification strategy for MOFs was proposed, establishing an electrochemical determination method for cyanides in Baijiu. Co and Ni were synergistically used as the metal active centers, with meso-Tetra(4-carboxyphenyl)porphine (TCPP) and Ferrocenecarboxylic acid (Fc-COOH) serving as the main ligands, synthesizing Ni/Co-MOF-TCPP-Fc through a hydrothermal method. The prepared MOF exhibited improved conductivity and stable ratio signals, enabling rapid and sensitive determination of cyanides. The screen-printed carbon electrodes (SPCE) were suitable for in situ and real-time determination of cyanide by electrochemical sensors due to their portability, low cost, and ease of mass production. A logarithmic linear response in the range of 0.196~44 ng/mL was demonstrated by this method, and the limit of detection (LOD) was 0.052 ng/mL. Compared with other methods, the sensor was constructed by a one-step synthesis method, which greatly simplifies the analysis process, and the determination time required was only 4 min. During natural cyanide determinations, recommended readouts match well with GC-MS with less than 5.9% relative error. Moreover, this electrochemical sensor presented a promising method for assessing the safety of cyanides in Baijiu.


Assuntos
Cianetos , Técnicas Eletroquímicas , Limite de Detecção , Estruturas Metalorgânicas , Cianetos/análise , Estruturas Metalorgânicas/química , Eletrodos , Técnicas Biossensoriais , Níquel/química , Compostos Ferrosos/química , Metalocenos/química , Cobalto/química
3.
Sci Total Environ ; 945: 173927, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901584

RESUMO

The ubiquity and persistence of organophosphate esters (OPEs) and heavy metal (HMs) pose global environmental risks. This study explored tris(2-chloroisopropyl)phosphate (TCPP) biomineralization coupled to lead (Pb2+) biostabilization driven by denitrifying bacteria (DNB). The domesticated DNB achieved synergistic bioremoval of TCPP and Pb2+ in the batch bioreactor (efficiency: 98 %).TCPP mineralized into PO43- and Cl-, and Pb2+ precipitated with PO43-. The TCPP-degrading/Pb2+-resistant DNB: Achromobacter, Pseudomonas, Citrobacter, and Stenotrophomonas, dominated the bacterial community, and synergized TCPP biomineralization and Pb2+ biostabilization. Metagenomics and metaproteomics revealed TCPP underwent dechlorination, hydrolysis, the TCA cycle-based dissimilation, and assimilation; Pb2+ was detoxified via bioprecipitation, bacterial membrane biosorption, EPS biocomplexation, and efflux out of cells. TCPP, as an initial donor, along with NO3-, as the terminal acceptor, formed a respiratory redox as the primary energy metabolism. Both TCPP and Pb2+ can stimulate phosphatase expression, which established the mutual enhancements between their bioconversions by catalyzing TCPP dephosphorylation and facilitating Pb2+ bioprecipitation. TCPP may alleviate the Pb2+-induced oxidative stress by aiding protein phosphorylation. 80 % of Pb2+ converted into crystalized pyromorphite. These results provide the mechanistic foundations and help develop greener strategies for synergistic bioremediation of OPEs and HMs.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais , Chumbo , Organofosfatos , Organofosfatos/química , Organofosfatos/metabolismo , Retardadores de Chama/metabolismo , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Desnitrificação , Chumbo/química , Chumbo/metabolismo , Achromobacter/metabolismo , Pseudomonas/metabolismo , Citrobacter/metabolismo , Stenotrophomonas/metabolismo , Metagenômica , Proteômica , Estresse Oxidativo
4.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842083

RESUMO

The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.

5.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712863

RESUMO

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , Humanos , Temperatura , Exposição Ambiental , Veículos Automotores
6.
ACS Appl Mater Interfaces ; 16(15): 18459-18473, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578815

RESUMO

Reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) hold great promise for tumor treatment. However, hypoxia, insufficient H2O2, and overexpressed glutathione (GSH) in the tumor microenvironment (TME) hinder ROS generation significantly. Herein, we reported CaO2@Cu-TCPP/CUR with O2/H2O2/Ca2+ self-supply and GSH depletion for enhanced PDT/CDT and Ca2+ overload synergistic therapy. CaO2 nanospheres were first prepared and used as templates for guiding the coordination between the carboxyl of tetra-(4-carboxyphenyl)porphine (TCPP) and Cu2+ ions as hollow CaO2@Cu-TCPP, which facilitated GSH-activated TCPP-based PDT and Cu+-mediated CDT. The hollow structure was then loaded with curcumin (CUR) to form CaO2@Cu-TCPP/CUR composites. Cu-TCPP prevented degradation of CaO2, while Cu2+ ions reacted with GSH to deplete GSH, produce Cu+ ions, and release TCPP, CaO2, and CUR. CaO2 reacted with H2O to generate O2, H2O2, and Ca2+ to achieve O2/H2O2/Ca2+ self-supply for TCPP-based PDT, Cu+-mediated CDT, and CUR-enhanced Ca2+ overload therapy. Thus, this multilevel ROS amplifier enhances synergistic therapy with fewer side effects and drug resistance.


Assuntos
Curcumina , Nanosferas , Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Glutationa , Microambiente Tumoral , Linhagem Celular Tumoral , Oxigênio
7.
Luminescence ; 39(3): e4720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523056

RESUMO

Developing effective means for detecting contamination in milk during production, processing, and storage is both important and challenging. Tetracycline (TC), due to its use in treating animal infections, is among the most prevalent organic pollutants in milk, posing potential and significant threats to human health. However, efficient and in situ monitoring of TC remains lacking. Nevertheless, we have successfully developed a highly sensitive and selective fluorescence method for detecting TC in milk using a metal-organic framework material made from Yb-TCPP (ytterbium-tetra(4-carboxyphenyl)porphyrin). The calculated Stern-Volmer constant (KSV) was 12,310.88 M-1, and the detection limit was 2.44 × 10-6 M, surpassing previous reports. Crucially, Yb-TCPP fluoresces in the near-infrared region, promising its development into a specific fluorescence detection product for practical TC detection in milk, offering potential application value.


Assuntos
Estruturas Metalorgânicas , Animais , Humanos , Leite/química , Fluorescência , Tetraciclina/análise , Antibacterianos/análise
8.
Chemosphere ; 353: 141544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408573

RESUMO

Meeting societal demand for potable water supply remains one of the prioritized challenges faced in the modern era. The anthropogenic intervention has led to a dire situation threatening ecological balance and human health. There is an inevitable need for the development of new technologies and innovations in existing technologies for water treatment. Photocatalytic Membrane technology, encompassing the merits of membrane filtration and photocatalytic degradation has evolved as a potential and reliable technology for sustainable water treatment. Innovations in photocatalytic materials and membrane fabrication techniques can lead to the goal of commercialization of membrane water treatment technology. Herein, we demonstrate the potential of graphitic carbon nitride (g-C3N4) and its functionalized analog as photocatalytic membranes for sustainable water treatment. g-C3N4 and Tetracarboxyphenylporphyrin sensitized g-C3N4 (g-C3N4/TCPP) was introduced onto commercial nylon membrane surface via a layer-by-layer (LBL) assembly method using chitosan and sodium salt of polystyrene sulphonic acid as polyelectrolytes. The fabricated membranes were characterized to ensure the integration of the photocatalysts. The performance of the membranes for water treatment was assessed by selecting some common dyes as model pollutants. The modified membranes exhibited excellent flux recovery and could afford high rejection rates upon irradiation indicating the prospects for sustainable filtration.


Assuntos
Grafite , Purificação da Água , Humanos , Grafite/efeitos da radiação , Compostos de Nitrogênio , Purificação da Água/métodos , Catálise
9.
Anal Chim Acta ; 1289: 342210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38245201

RESUMO

Alkaline phosphatase (ALP) is a major biomarker for clinical diagnosis, but detection methods of ALP are limited in sensitivity and selectivity. In this paper, a novel method for ALP determination is proposed. A photoelectrochemical (PEC) sensor was prepared by growing UiO-tetratopic tetrakis (4-carbox-yphenyl) porphyrin (TCPP) in situ between layered Ti3C2 through a one-pot hydrothermal method. The obtained Schottky heterojunction photoelectric material Ti3C2@UiO-TCPP not only has a large light absorption range but also greatly improves the efficiency of photogenerated electron hole separation and thereby enhances sensitivity for PEC detection. The phosphate group on the phosphorylated polypeptide was utilized to form a Zr-O-P bond with the zirconium ion on UiO-66, and then photocurrent decreases due to the steric hindrance effect of phosphorylated polypeptides, that is, the hindrance of electron transfer between the photoelectric material and a solution. The specific interaction between ALP and phosphorylated polypeptides shears the bond between phosphate and zirconium ion on UiO-66 in the peptides then weakens the hindrance effect and increases the photocurrent, thus realizing ALP detection. The linear range of ALP is 0.03-10,000 U·L-1, and the detection limit is 0.012 U·L-1. The method is highly sensitive and selective, and has been applied in detection of ALP in serum samples.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Fosfopeptídeos , Ácidos Ftálicos , Fosfatase Alcalina/química , Titânio/química , Zircônio/química , Corantes , Fosfatos , Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas Eletroquímicas/métodos
10.
Biosens Bioelectron ; 247: 115938, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141442

RESUMO

The introduction of noble metal nanoparticles with good LSPR characteristics can greatly improve the sensitivity of SPR through resonance coupling effect. The plasma resonance response and optical properties of film coupling nanoparticle systems largely depends on the ingenious design of gap structures. Nucleic acid nanostructures have good stability, flexibility, and high biocompatibility, making them ideal materials for gap construction. 2D MOF (Cu-Tcpp) has a large conjugated surface similar to graphene, which can provide a stable substrate for the directional fixation of nucleic acid nanostructures. However, research on gap coupling plasmon based on nucleic acid nanostructures and 2D MOF is still rarely reported. By integrating the advantages of Cu-Tcpp assembled film and DNA tetrahedron immobilization, a nano gap with porous scaffold structure between the gold film and gold nanorod was build. The rigidity of DNA tetrahedron can precisely control the gap size, and its unique programmability allows us to give the coupling structure greater flexibility through the design of nucleic acid chain. The experimental results and FDTD simulation show that the film coupling nanoparticle systems constructed with DNA tetrahedrons greatly enhance the electric field strength near the chip surface and effectively improve the sensitivity of SPR. This research shows the huge potential of nucleic acid nanomaterials in the construction of SPR chip surface microstructures.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácidos Nucleicos , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/métodos , Antígeno B7-H1 , DNA/química , Nanopartículas Metálicas/química , Ouro/química
11.
Small ; 20(21): e2308783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105423

RESUMO

The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).

12.
Talanta ; 265: 124778, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37336059

RESUMO

With the increasing demand for on-site detection, the current approach of building dual-emission or multi-emission luminescence sensors based on metal-organic frameworks (MOFs) which possess the capacity of self-reference for numerous non-analyte factors falls short of meeting sensing requirements. Therefore, we have designed a novel strategy for constructing wavelength shift-based luminescence sensor named Eu/Gd(TCPP), which exhibits dual-emitting from metal ions Eu3+ and flexible rotating aggregation-induced emission (AIE) ligands H4TCPP (2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine). This sensor was prepared by a simple, green and fast plasma synthesis method. It's worth noting that the fluorescence emission of Eu/Gd(TCPP) shows a specific wavelength shift from ligand peak, and a visual color change from red to blue within a pH range of 4 to 3. Moreover, various characterization data verified that the luminescence switching mechanism of Eu/Gd(TCPP) was attributed to the H+-induced collapse of the Eu/Gd(TCPP) crystal structure, followed by untwisting of free ligands that lose rigid MOFs confinement. This hindered the antenna effect from H4TCPP to Ln3+ ions and restricted the rotation emission of ligand, resulting in the red-shifting of the ligand emission and corresponding luminescence switching. By tactfully utilizing the short-range pH response property of Eu/Gd(TCPP), highly sensitive and selective on-site visual detection of acidic aspartic acid can be achieved.

13.
Anal Bioanal Chem ; 415(3): 447-456, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36357598

RESUMO

Establishing an effective signal amplification strategy is the key to achieving sensitive detection of analytes by electrochemical immunoassay. In this work, a novel sandwich-type electrochemical immunosensor with dual-signal amplification was successfully constructed using PtPd/Cu-TCPP(Fe) as the sensing platform and mesoporous silicon dioxide as the signal amplifier. Firstly, two-dimensional wrinkled Cu-TCPP(Fe) nanomaterials loaded with PtPd nanoparticles have strong affinity for the immobilization of capture antibodies and can generate excellent electrochemical signals. Meanwhile, the mesoporous silicon dioxide with large steric hindrance was used as signal label to further improve the sensitivity of the immunosensor by increasing the difference of the current response signal. Under optimal experimental conditions, the electrochemical immunosensor exhibited a wide linear detection range from 0.1 pg/mL to 1.0 µg/mL, with a detection limit as low as 0.166 fg/mL. The experimental results showed that the constructed immunosensor has a great application prospect in clinical biomarker detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanocompostos , Antígeno Carcinoembrionário , Técnicas Biossensoriais/métodos , Anticorpos Imobilizados , Imunoensaio/métodos , Dióxido de Silício , Técnicas Eletroquímicas/métodos , Ouro , Limite de Detecção
14.
Toxics ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36548569

RESUMO

Tris(chloropropyl) phosphate (TCPP) is a characteristic and widely used organophosphorus flame retardant. TCPP is comprised of four isomers and the most abundant is tris(1-chloro-2-propyl) phosphate. TCPP can be released into the environment, with potential impacts on living organisms and humans due to its extensive industrial use. Aiming to assess the potential risks of TCPP on human health and the environment, its toxic and genotoxic effects-using organisms from different trophic levels, i.e., bacteria, green microalgae, and human cells-were investigated. TCPP exposure at nominal concentrations of 10, 20, 30 and 40 µg mL-1 was studied to identify the potential risk of inducing genotoxic effects in cultured human lymphocytes. Treatment with 30 and 40 µg mL-1 of TCPP induced marginally significant micronuclei (MN) frequencies as well as cytotoxic effects. Freshwater microalgae species treated with TCPP (0.5, 1, 10, 20 and 50 µg L-1) showed different growth rates over time. All the tested microalgae species were adversely affected after exposure to TCPP during the first 24 h. However, differences among the microalgae species' sensitivities were observed. In the case of the freshwater species, the most sensitive was found to be Chlorococcum sp. The marine algal species Dunaliella tertiolecta and Tisochrysis lutea were significantly affected after exposure to TCPP. The effects of TCPP on Aliivibrio fischeri that were observed can classify this flame retardant as a "harmful" compound. Our results suggest a potential risk to aquatic organisms and humans from the wide utilization of TCPP and its consequent release into the environment. These results highlight that further research should be conducted to investigate the effects of TCPP individually and in combination with other organophosphorus flame retardants in various organisms. In addition, the concern induced by TCPP points out that measures to control the introduction of TCPP into the environment should be taken.

15.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430782

RESUMO

Tris (1-chloro-2-propyl) phosphate (TCPP) is one of the most frequently detected organophosphorus flames in the environment. Continuous daily exposure to TCPP may harm human skin. However, little is known about the adverse effects of TCPP on human skin. In this study, we first evaluated the detrimental effects and tried to uncover the underlying mechanisms of TCPP on human skin keratinocytes (HaCaT) after 24 h exposure. We found that TCPP caused a concentration-dependent decrease in HaCaT cell viability after exposure to 1.56-400 µg/mL for 24 h, with an IC50 of 275 µg/mL. TCPP also promoted the generation of intracellular reactive oxygen species (ROS) and triggered DNA damage, evidenced by an increase of phosphorylated histone H2A.X (γH2A.X) in the nucleus. Furthermore, the cell cycle was arrested at the G1 phase at 100 µg/mL by upregulation of the mRNA expression of p53 and p21 and downregulation of cyclin D1 and CDK4 expression. Additionally, both the senescence-associated-ß-galactosidase activity and related proinflammatory cytokine IL-1ß and IL-6 were elevated, indicating that TCPP exposure caused cellular senescence may be through the p53-dependent DNA damage signal pathway in HaCaT cells. Taken together, our data suggest that flame-retardant exposure may be a key precipitating factor for human skin aging.


Assuntos
Retardadores de Chama , Envelhecimento da Pele , Humanos , Senescência Celular , Retardadores de Chama/toxicidade , Queratinócitos/metabolismo , Compostos Organofosforados/toxicidade , Compostos Organofosforados/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Food Chem Toxicol ; 169: 113432, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115506

RESUMO

Environmental monitoring data have indicated that three chlorinated organophosphorus flame retardants (Cl-OPFRs), including tris(2-chloroethyl)-phosphate (TCEP), tris(2-chloropropyl)-phosphate (TCPP), and tris(1,3-dichloro-2-propyl)-phosphate (TDCPP) are the predominant chemicals in various environmental matrices and exhibit reproductive endocrine disrupting activities. Currently, mitochondrial abnormality is a new paradigm for evaluating chemical-mediated cell dysfunction. However, a comprehensive correlation between these two aspects of Cl-OPFRs remains unclear. In this research, the effects of TCEP, TCPP, and TDCPP on progesterone production and mitochondrial impairment were investigated by using mouse Leydig tumor cells (mLTC-1). The half maximal inhibitory concentration (IC50) values at 48 h exposure indicated that the rank order of anti-androgenic activity was TDCPP > TCPP. Whereas, TCEP exhibited elevation of progesterone production. At concentrations close to IC50 of progesterone production by TCPP and TDCPP, the elevation of intracellular reactive oxygen species (ROS), depletion of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, and alteration of mitochondrial structures was observed. In addition, the expression of main genes related to progesterone synthesis was dramatically down-regulated by TCPP and TDCPP treatments. These results imply that the inhibition effect of TCPP and TDCPP on progesterone production might be related to mitochondrial damage and down-regulated steroidogenic genes.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , Mitocôndrias , Organofosfatos , Fosfinas , Progesterona , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Fosfinas/toxicidade , Progesterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tumor de Células de Leydig , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Monitoramento Ambiental/métodos
17.
Biosens Bioelectron ; 217: 114723, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150324

RESUMO

Patulin (PAT) is an unsaturated lactone mycotoxin primarily produced by Penicillium expansum and Aspergillus clavatus. Given the potential health risks and economic losses associated with PAT, the rapid detection of PAT using fluorescent aptasensors is of significant importance in evaluating food safety. However, it easily increases the cost and complexity caused by signal labeling. We combined TCPP/BDC-NH2 mixed ligands functionalized Zr metal-organic frameworks (Zr-MOFmix) and terminated three-stranded DNA gates (ttsDNA gates) to fabricate a label-free fluorescent aptasensor for PAT detection. The Zr-MOFmix system was synthesized via a one-pot strategy and could be used to address the problem of pore size limitation and increase the loading amounts of dyes. TtsDNA gate was integrated into the Zr-MOFmix system to control the release of dyes, exhibiting a high signal-to-background ratio. The single-stranded aptamer region in ttsDNA gate situated away from the surface of the Zr-MOFmix, resulting in a natural release of dyes in the absence of PAT. While binding to PAT resulted in target-induced conformational changes that helped form the hairpin structure of the aptamer. This structure hindered the release of dyes from the pores of Zr-MOFmix, thus reducing the fluorescence signals intensity. The stimuli-responsive DNA-gated material provides a platform for PAT analysis under conditions of a low limit of detection (0.871 pg/mL). Furthermore, the excellent specificity and anti-interference of the fluorescent aptasensor make the system suitable for the analysis of apple juice samples. This label-free strategy is cheaper and simper compared with labeled detection, especially for the development of multi-target-detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Patulina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Corantes , DNA , Lactonas , Limite de Detecção , Estruturas Metalorgânicas/química , Porfirinas
18.
Sensors (Basel) ; 22(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36080859

RESUMO

We developed and evaluated an anodized-aluminum pressure-sensitive paint (AA-PSP) with new formulations of free-base porphyrin, H2TCPP, as an optical unsteady pressure sensor. The luminophore H2TCPP has quite a short fluorescent lifetime (2.4 ns on the condition of the AA-PSP). The fluorescence spectroscopy result shows that the excitation wavelength of H2TCPP corresponds to violet-colored (425 nm) and green-colored (longer than 520 nm) lights. The pressure sensitivity is sufficiently high for the pressure sensor (0.33-0.51%/kPa) and the temperature sensitivity is very low (0.07-1.46%/K). The photodegradation of the AA-PSPs is not severe in both excitation light sources of the green LED and the Nd:YAG laser. The resonance tube experiment result shows the cut-off frequency of the AA-PSPs is over 9.0 kHz, and the results of the shock tube experiment show the 10 µs order time constant of the normal shock wave.

19.
Sci Total Environ ; 851(Pt 1): 158176, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995159

RESUMO

As a good carrier of contaminants, nanotitanium dioxide (nTiO2) can absorb organic pollutants, producing toxicological effects on organisms. However, the complex effects of nTiO2 with contaminants on marine mussels are still unclear. In this study, we exposed mussels to tris (2-chloropropyl) phosphate (TCPP) 100 µg/L (T1), 0.5 mg/L nTiO2 + 100 µg/L TCPP (T2), 1.0 mg/L nTiO2 + 100 µg/L TCPP (T3) and control (0 nTiO2 + 0 µg/L TCPP) treatments, and assessed the combined effects of TCPP with nTiO2 on the thick-shelled mussel Mytilus coruscus by detecting the activities of gill pyruvate kinase (PK), hexokinase (HK), lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH), also gill acetylcholine (Ach) and muscle lactic acid (LD) contents and gut microbiota after 14-d exposure. Compared with the control group, PK activity was increased significantly, but SDH, LDH activities and LD content were decreased significantly in T1, with the addition of nTiO2, there were not significantly different in T3. However, Ach content in T3 was significantly higher than the control and T1. Moreover, KEGG of the gut microbiota via 16 s rRNA sequencing showed that most pathways returned to the control level in T3. The results showed that TCPP affected the respiratory metabolism of mussels, changed the community structure of intestinal microflora in mussels, and nTiO2 alleviated the toxicity of TCPP. Our study provides new insights for ecological risk assessment of TCPP in bivalves in the complex aquatic environment and the novel role of nTiO2 in regulating the toxicity of TCPP.


Assuntos
Microbioma Gastrointestinal , Mytilus , Poluentes Químicos da Água , Animais , Acetilcolina , Hexoquinase/metabolismo , Lactato Desidrogenases/metabolismo , Ácido Láctico , Mytilus/metabolismo , Fosfatos/metabolismo , Piruvato Quinase/metabolismo , Succinato Desidrogenase/metabolismo , Titânio/química , Poluentes Químicos da Água/análise
20.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806748

RESUMO

It is quite important to develop sensitive, simple, and convenient methods for the simultaneous determination of Hydroquinone (HQ) and Catechol (CC) due to their wide existence, the difficulty of degradation, and the high toxicity. Herein, Cu-TCPP nanosheets were prepared in N,N-dimethylformamide (DMF) through the solvent exfoliation method. The morphology and electrochemical performance of Cu-TCPP were characterized, revealing its stacked sheet structure with abundant pores, a fast electron transfer ability, and a large electrode active area. Using Cu-TCPP nanosheets as the sensitive material to modify the glassy carbon electrodes (Cu-TCPP/GCEs), it was found that they had an obvious enhancement effect on the electrochemical oxidation currents of HQ and CC. The signal enhancement mechanism was explored. The Cu-TCPP nanosheets not only enhanced the accumulation abilities of HQ and CC, but also improved their apparent catalytic rate, displaying high sensitivity for HQ and CC. The values of the detection limit were calculated to be 3.4 and 2.3 nM for HQ and CC. A satisfactory recovery was obtained when this method was used in measuring HQ and CC in the water samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA