Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Comput Struct Biotechnol J ; 24: 404-411, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38813092

RESUMO

Lung cancer is the main cause of cancer-related deaths worldwide. Due to lack of obvious clinical symptoms in the early stage of the lung cancer, it is hard to distinguish between malignancy and pulmonary nodules. Understanding the immune responses in the early stage of malignant lung cancer patients may provide new insights for diagnosis. Here, using high-through-put sequencing, we obtained the TCRß repertoires in the peripheral blood of 100 patients with Stage I lung cancer and 99 patients with benign pulmonary nodules. Our analysis revealed that the usage frequencies of TRBV, TRBJ genes, and V-J pairs and TCR diversities indicated by D50s, Shannon indexes, Simpson indexes, and the frequencies of the largest TCR clone in the malignant samples were significantly different from those in the benign samples. Furthermore, reduced TCR diversities were correlated with the size of pulmonary nodules. Moreover, we built a backpropagation neural network model with no clinical information to identify lung cancer cases from patients with pulmonary nodules using 15 characteristic TCR clones. Based on the model, we have created a web server named "Lung Cancer Prediction" (LCP), which can be accessed at http://i.uestc.edu.cn/LCP/index.html.

2.
J Transl Med ; 22(1): 33, 2024 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185632

RESUMO

BACKGROUND: The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS: A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRß repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS: Diversity and clonality of the TCRß repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRß data to public databases, 692 unique TCRß sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRß clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRß clonotypes. CONCLUSIONS: Our findings reveal distinct TCRß signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION: FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Leucócitos Mononucleares , Epitopos , Receptores de Antígenos de Linfócitos T/genética
3.
Mol Immunol ; 162: 54-63, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647774

RESUMO

OBJECTIVE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the prolonged and widespread epidemic of coronavirus disease 2019 (COVID-19). The inactivated BBIBP-CorV vaccine has shown safety, efficacy and immunogenicity against COVID-19 in in-vitro studies and clinical trials. However, the characteristics changes of the TCRß repertoire in patients receiving BBIBP-CorV remain unclear. METHODS: TCRß repertoire difference were analyzed between 54 uninfected subjects who received a third dose of the enhanced BBIBP-CorV vaccine and the 16 healthy donors who did not receive the vaccine and 44 COVID-19 patients with different courses of disease (asymptomatic, symptomatic and convalescent). Furthermore, antibody response, anti-inflammatory and pro-inflammatory cytokines also were examined. RESULTS: We found that the third dose inactivated coronavirus vaccine induced widespread changes including the increased TCRß repertoire diversity, a much shorter CDR3 length and high usage of V-J genes segments. Meanwhile, the vaccine-responding clones were also predicted. The results of the antibody response showed that 90.7 % of the vaccinated individuals were positive for NAb seroconversion and 88.9 % for IgG antibody about 60 days after the third dose. The concentration of IL-2 increased significantly compared to baseline inoculation. CONCLUSION: Altered TCRß repertoire in adults with SARS CoV-2 inactivated vaccine of BBIBP-CorV clarified the specific immunity induced by inactivated vaccines. Our research provides insights into the adaptive immune response induced by the new inactivated SARS-CoV-2 vaccine and strengthens the development of immunotherapy.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Adulto , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas de Produtos Inativados , Receptores de Antígenos de Linfócitos T
4.
Cell Rep ; 35(6): 109118, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979626

RESUMO

As a critical machinery for rapid pathogen removal, resident memory T cells (TRMs) are locally generated after the initial encounter. However, their development accompanying tumorigenesis remains elusive. Using a murine breast cancer model, we show that TRMs develop in the tumor, the contralateral mammary mucosa, and the pre-metastatic lung. Single-cell RNA sequencing of TRMs reveals two phenotypically distinct populations representing their active versus quiescent phases. These TRMs in different tissue compartments share the same TCR clonotypes and transcriptomes with a subset of intratumoral effector/effector memory T cells (TEff/EMs), indicating their developmental ontogeny. Furthermore, CXCL16 is highly produced by tumor cells and CXCR6- TEff/EMs are the major subset preferentially egressing the tumor to form distant TRMs. Functionally, releasing CXCR6 retention in the primary tumor amplifies tumor-derived TRMs in the lung and leads to superior protection against metastases. This immunologic fortification suggests a potential strategy to prevent metastasis in clinical oncology.


Assuntos
Células T de Memória/metabolismo , Neoplasias/genética , Animais , Humanos , Camundongos , Metástase Neoplásica , Transfecção
5.
Front Immunol ; 10: 2213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620131

RESUMO

The CSF-470 cellular vaccine plus BCG and rhGM-CSF increased distant metastases-free survival in cutaneous melanoma patients stages IIB-IIC-III relative to medium dose IFN-α2b (CASVAC-0401 study). Patient-045 developed a mature vaccination site (VAC-SITE) and a regional cutaneous metastasis (C-MTS), which were excised during the protocol, remaining disease-free 36 months from vaccination start. CDR3-TCRß repertoire sequencing in PBMC and tissue samples, along with skin-DTH score and IFN-γ ELISPOT assay, were performed to analyze the T-cell immune response dynamics throughout the immunization protocol. Histopathological analysis of the VAC-SITE revealed a highly-inflamed granulomatous structure encircled by CD11c+ nested-clusters, brisk CD8+ and scarce FOXP3+, lymphocytes with numerous Langhans multinucleated-giant-cells and macrophages. A large tumor-regression area fulfilled the C-MTS with brisk lymphocyte infiltration, mainly composed of CD8+PD1+ T-cells, CD20+ B-cells, and scarce FOXP3+ cells. Increasing DTH score and IFN-γ ELISPOT assay signal against the CSF-470 vaccine-lysate was evidenced throughout immunization. TCRß repertoire analysis revealed for the first time the presence of common clonotypes between a VAC-SITE and a C-MTS; most of them persisted in blood by the end of the immunization protocol. In vitro boost with vaccine-lysate revealed the expansion of persistent clones that infiltrated the VAC-SITE and/or the C-MTS; other persistent clones expanded in the patient's blood as well. We propose that expansion of such persistent clonotypes might derive from two different although complementary mechanisms: the proliferation of specific clones as well as the expansion of redundant clones, which increased the number of nucleotide rearrangements per clonotype, suggesting a functional antigenic selection. In this patient, immunization with the CSF-470 vaccine plus BCG and rhGM-CSF induced a T-cell repertoire at the VAC-SITE that was able to infiltrate an emerging C-MTS, which resulted in the expansion of a T-cell repertoire that persisted in blood by the end of the 2-year treatment.


Assuntos
Vacinas Anticâncer/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Vacina BCG/uso terapêutico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Melanoma Maligno Cutâneo
6.
Front Immunol ; 9: 1943, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30214443

RESUMO

Despite the increasing use of humanized mouse models to study new approaches of graft-versus-host disease (GVHD) prevention, the pathogenesis of xenogeneic GVHD (xGVHD) in these models remains misunderstood. The aim of this study is to describe this pathogenesis in NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice infused with human PBMCs and to assess the impact of the expression of HLA-A0201 by NSG mice cells (NSG-HLA-A2/HHD mice) on xGVHD and graft-versus-leukemia (GvL) effects, by taking advantage of next-generation technologies. We found that T cells recovered from NSG mice after transplantation had upregulated expression of genes involved in cell proliferation, as well as in TCR, co-stimulatory, IL-2/STAT5, mTOR and Aurora kinase A pathways. T cells had mainly an effector memory or an effector phenotype and exhibited a Th1/Tc1-skewed differentiation. TCRß repertoire diversity was markedly lower both in the spleen and lungs (a xGVHD target organ) than at infusion. There was no correlation between the frequencies of specific clonotypes at baseline and in transplanted mice. Finally, expression of HLA-A0201 by NSG mice led to more severe xGVHD and enhanced GvL effects toward HLA-A2+ leukemic cells. Altogether our data demonstrate that the pathogenesis of xGVHD shares important features with human GVHD and that NSG-HLA-A2/HHD mice could serve as better model to study GVHD and GvL effects.


Assuntos
Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/imunologia , Antígeno HLA-A2/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/transplante , Animais , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Efeito Enxerto vs Leucemia/genética , Efeito Enxerto vs Leucemia/imunologia , Antígeno HLA-A2/genética , Xenoenxertos , Humanos , Leucócitos Mononucleares/patologia , Camundongos
7.
Ann Hematol ; 96(4): 665-680, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28091735

RESUMO

Epstein-Barr virus (EBV) primary infection is usually asymptomatic, but it sometimes progresses to infectious mononucleosis (IM). Occasionally, some people develop chronic active EBV infection (CAEBV) with underlying immunodeficiency, which belongs to a continuous spectrum of EBV-associated lymphoproliferative disorders (EBV+ LPD) with heterogeneous clinical presentations and high mortality. It has been well established that T cell-mediated immune response plays a critical role in the disease evolution of EBV infection. Recently, high-throughput sequencing of the hypervariable complementarity-determining region 3 (CDR3) segments of the T cell receptor (T cell receptor ß (TCRß)) has emerged as a sensitive approach to assess the T cell repertoire. In this study, we fully characterized the diversity of peripheral blood TCRß repertoire in IM (n = 6) and CAEBV patients (n = 5) and EBV-seropositive controls (n = 5). Compared with the healthy EBV-seropositive controls, both IM and CAEBV patients demonstrate a significant decrease in peripheral blood TCRß repertoire diversity, basically, including narrowed repertoire breadth, highly expanded clones, and skewed CDR3 length distribution. However, there is no significant difference between IM and CAEBV patients. Furthermore, we observed some disease-related preferences in TRBV/TRBJ usage and combinations, as well as lots of T cell clones shared by different groups (unique or overlapped) involved in public T cell responses, which provide more detailed insights into the divergent disease evolution.


Assuntos
Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/diagnóstico , Mononucleose Infecciosa/sangue , Mononucleose Infecciosa/diagnóstico , Receptores de Antígenos de Linfócitos T alfa-beta/sangue , Adolescente , Adulto , Biomarcadores/sangue , Doença Crônica , Infecções por Vírus Epstein-Barr/epidemiologia , Feminino , Humanos , Mononucleose Infecciosa/epidemiologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA