Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38990702

RESUMO

Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. Toll-like receptor (TLR) agonists can also re-activate immunity and the TLR9 agonist, CpG-ODN, has been effective in treating lung cancer in animal models. Here we investigate the use of TLR9 agonist CpG-ODN as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1, standard of care rapamycin and determine the immune mechanisms underlying therapeutic efficacy. We used survival studies, flow cytometry, ELISA, and histology to assess immune response and survival after intranasal treatment with CpG-ODN in combination with rapamycin or anti-PD1 therapy in a mouse model of metastatic LAM. We found that local administration of CpG-ODN enhances survival in a mouse model of LAM. We found that a lower dose led to longer survival likely due to fewer local side effects but increased LAM nodule count and size compared to the higher dose. CpG-ODN treatment also reduced regulatory T cells and increased the number of Th17 helper T cells as well as cytotoxic T cells. These effects appear to be mediated in part by plasmacytoid dendritic cells (pDCs), as depletion of pDCs reduces survival and abrogates Th17 T cell response. Finally, we found that CpG-ODN treatment is effective in early stage and progressive disease and is additive with anti-PD1 therapy and rapamycin. In summary, we have found that TLR9 agonist CpG-ODN can be used as LAM immunotherapy and effectively synergizes with rapamycin and anti-PD1 therapy in LAM.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892096

RESUMO

Influenza A viruses (IAVs) pose a significant global threat to human health. A tightly controlled host immune response is critical to avoid any detrimental effects of IAV infection. It is critical to investigate the association between the response of Toll-like receptors (TLRs) and influenza virus. Because TLRs may act as a double-edged sword, a balanced TLR response is critical for the overall benefit of the host. Consequently, a thorough understanding of the TLR response is essential for targeting TLRs as a novel therapeutic and prophylactic intervention. To date, a limited number of studies have assessed TLR and IAV interactions. Therefore, further research on TLR interactions in IAV infection should be conducted to determine their role in host-virus interactions in disease causation or clearance of the virus. Although influenza virus vaccines are available, they have limited efficacy, which should be enhanced to improve their efficacy. In this study, we discuss the current status of our understanding of the TLR response in IAV infection and the strategies adopted by IAVs to avoid TLR-mediated immune surveillance, which may help in devising new therapeutic or preventive strategies. Furthermore, recent advances in the use of TLR agonists as vaccine adjuvants to enhance influenza vaccine efficacy are discussed.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Receptores Toll-Like , Humanos , Receptores Toll-Like/metabolismo , Influenza Humana/imunologia , Influenza Humana/virologia , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Transdução de Sinais
3.
Adv Protein Chem Struct Biol ; 140: 59-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762280

RESUMO

It is critical to emphasize the importance of vaccination as it protects us against harmful pathogens. Despite significant progress in vaccine development, there is an ongoing need to develop vaccines that are not only safe but also highly effective in protecting against severe infections. Subunit vaccines are generally safe, but they frequently fail to elicit strong immune responses. As a result, there is a need to improve vaccine effectiveness by combining them with adjuvants, which have the potential to boost the immune system many folds. The process of developing these adjuvants requires searching for molecules capable of activating the immune system, combining these promising compounds with an antigen, and then testing this combination using animal models before approving it for clinical use. Liposomal adjuvants work as delivery adjuvants and its activity depends on certain parameters such as surface charge, vesicle size, surface modification and route of administration. Self-assembly property of peptide adjuvants and discovery of hybrid peptides have widened the scope of peptides in vaccine formulations. Since most pathogenic molecules are not peptide based, phage display technique allows for screening peptide mimics for such pathogens that have potential as adjuvants. This chapter discusses about peptide and liposome-based adjuvants focusing on their properties imparting adjuvanticity along with the methods of formulating them. Methods of adjuvant characterization important for an adjuvant to be approved for clinical trials are also discussed. These include assays for cytotoxicity, T-lymphocyte proliferation, dendritic cell maturation, cytokine and antibody production, toll-like receptor dependent signaling and adjuvant half-life.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Adjuvantes Imunológicos/química , Humanos , Lipossomos/química , Animais , Peptídeos/química , Peptídeos/imunologia , Vacinas/química , Vacinas/imunologia
4.
Adv Mater ; 36(23): e2312493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444177

RESUMO

Toll-like receptor 7/8 agonists, such as imidazoquinolines (IMDQs), are promising for the de novo priming of antitumor immunity. However, their systemic administration is severely limited due to the off-target toxicity. Here, this work describes a sequential drug delivery strategy. The formulation is composed of two sequential modules: a tumor microenvironment remodeling nanocarrier (poly(l-glutamic acid)-graft-methoxy poly(ethylene glycol)/combretastatin A4, termed CA4-NPs) and an immunotherapy nanocarrier (apcitide peptide-decorated poly(l-glutamic acid)-graft-IMDQ-N3 conjugate, termed apcitide-PLG-IMDQ-N3). CA4-NPs, as a vascular disrupting agent, are utilized to remodel the tumor microenvironment for enhancing tumor coagulation and hypoxia. Subsequently, the apcitide-PLG-IMDQ-N3 could identify and target tumor coagulation through the binding of surface apcitide peptide to the GPIIb-IIIa on activated platelets. Afterward, IMDQ is activated selectively through the conversion of "-N3" to "-NH2" in the presence of hypoxia. The biodistribution results confirm their high tumor uptake of activated IMDQ (22.66%ID/g). By augmenting the priming and immunologic memory of tumor-specific CD8+ T cells, 4T1 and CT26 tumors with a size of ≈500 mm3 are eradicated without recurrence in mouse models.


Assuntos
Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Nanopartículas/química , Portadores de Fármacos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Polietilenoglicóis/química , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Imunoterapia
5.
Exp Biol Med (Maywood) ; 249: 10021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463391

RESUMO

The presence of inhibitory immune cells and difficulty in generating activated effector T cells remain obstacles to development of effective cancer vaccines. We designed a vaccine regimen combining human telomerase reverse transcriptase (hTERT) peptides with concomitant therapies targeting regulatory T cells (Tregs) and cyclooxygenase-2 (COX2)-mediated immunosuppression. This Phase 1 trial combined an hTERT-derived 7-peptide library, selected to ensure presentation by both HLA class-I and class-II in 90% of patients, with oral low-dose cyclophosphamide (to modulate Tregs) and the COX2 inhibitor celecoxib. Adjuvants were Montanide and topical TLR-7 agonist, to optimise antigen presentation. The primary objective was determination of the safety and tolerability of this combination therapy, with anti-cancer activity, immune response and detection of antigen-specific T cells as additional endpoints. Twenty-nine patients with advanced solid tumours were treated. All were multiply-pretreated, and the majority had either colorectal or prostate cancer. The most common adverse events were injection-site reactions, fatigue and nausea. Median progression-free survival was 9 weeks, with no complete or partial responses, but 24% remained progression-free for ≥6 months. Immunophenotyping showed post-vaccination expansion of CD4+ and CD8+ T cells with effector phenotypes. The in vitro re-challenge of T cells with hTERT peptides, TCR sequencing, and TCR similarity index analysis demonstrated the expansion following vaccination of oligoclonal T cells with specificity for hTERT. However, a population of exhausted PD-1+ cytotoxic T cells was also expanded in vaccinated patients. This vaccine combination regimen was safe and associated with antigen-specific immunological responses. Clinical activity could be improved in future by combination with anti-PD1 checkpoint inhibition to address the emergence of an exhausted T cell population.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Telomerase , Masculino , Humanos , Linfócitos T CD8-Positivos , Telomerase/genética , Telomerase/metabolismo , Vacinação , Peptídeos , Vacinas Anticâncer/efeitos adversos , Receptores de Antígenos de Linfócitos T
6.
Res Sq ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37790490

RESUMO

Autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination is a promising immunotherapy for patients with high grade gliomas, but responses have not been demonstrated in all patients. To determine the most effective combination of autologous tumor lysate-pulsed DC vaccination, with or without the adjuvant toll-like receptor (TLR) agonists poly-ICLC or resiquimod, we conducted a Phase 2 clinical trial in 23 patients with newly diagnosed or recurrent WHO Grade III-IV malignant gliomas. We then performed deep, high-dimensional immune profiling of these patients to better understand how TLR agonists may influence the systemic immune responses induced by ATL-DC vaccination. Bulk RNAseq data demonstrated highly significant upregulation of type 1 and type 2 interferon gene expression selectively in patients who received adjuvant a TLR agonist together with ATL-DC. CyTOF analysis of patient peripheral blood mononuclear cells (PBMCs) showed increased expression of PD-1 on CD4+ T-cells, decreases in CD38 and CD39 on CD8+ T cells and elevated proportion of monocytes after ATL-DC + TLR agonist administration. In addition, scRNA-seq demonstrated a higher expression fold change of IFN-induced genes with poly-ICLC treatment in both peripheral blood monocytes and T lymphocytes. Patients who had higher expression of interferon response genes lived significantly longer and had longer time to progression compared to those with lower expression. The results suggest that ATL-DC in conjunction with adjuvant poly-ICLC induces a polarized interferon response in circulating monocytes and specific activation of a CD8+ T cell population, which may represent an important blood biomarker for immunotherapy in this patient population. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01204684.

7.
Methods Cell Biol ; 180: 81-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37890934

RESUMO

Radiotherapy (RT) can work together with the immune system to eliminate cancer. It can cause immunogenic cell death and facilitate tumor neoantigen presentation and thereby the cross-priming of tumor-specific T-lymphocytes, turning irradiated tumors into in-situ vaccines. Accumulating preclinical and clinical evidence indicates that RT in conjunction with ICB leads to systemic anti-tumor immune responses, thus stimulating interest in using ICB to overcome primary and acquired cancer resistance to radiotherapy. However, the systemic effects (abscopal effects) obtained to date are far from being acceptable for clinical translation. In this context, multiple preclinical mouse models have demonstrated that a variety of immunotherapy agents can be delivered locally to enhance antitumor immunity both in a local and systemic fashion. Using two slightly asynchronous and anatomically distant subcutaneous B16OVA tumors in syngeneic immunocompetent hosts (C57BL/6), we describe the feasibility of a local immunotherapy treatment given in combination with external beam irradiation, which exerts immune-mediated antitumor effects in mice and humans upon intratumoral delivery. With minor variations, the same technique can be easily applied to a variety of mouse transplantable tumors.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/radioterapia , Neoplasias/patologia , Imunoterapia/métodos , Linfócitos T
8.
Front Cell Infect Microbiol ; 13: 1259822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854858

RESUMO

Background and aims: Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods: We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results: TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions: Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , SARS-CoV-2 , Administração Intranasal , Linfócitos T CD8-Positivos , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Receptor Toll-Like 9 , Camundongos Endogâmicos C57BL , COVID-19/prevenção & controle , Vaccinia virus , Adjuvantes Imunológicos , Anticorpos Antivirais
9.
J Virus Erad ; 9(3): 100344, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37744732

RESUMO

With growing interest and efforts to achieve a hepatitis B (HBV) cure, HBV therapeutics have increasingly entered the clinical testing phase. In designing an early phase clinical trial aimed at HBV cure, the heterogeneity in participants and the choice of a biomarker endpoint that signals a cure requires careful consideration. We describe the key elements to consider during the development of HBV clinical trials aimed at a functional cure, and how we have addressed them in the design of a phase II AIDS Clinical Trials Group (ACTG) study, A5394 (NCT05551273). The trial we present is for persons with both HIV and HBV, a unique population that has much to gain from an HBV cure. Our decisions on the design elements are specific to the study agent and the targeted population, but our deliberations may be informative in the emerging field of early phase HBV trials aimed at cure.

10.
Cancers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37568794

RESUMO

TLR agonists have emerged as an efficient cancer vaccine adjuvant system that induces robust immune responses. L-pampo™, a proprietary vaccine adjuvant of TLR2 and TLR3 agonists, promotes strong humoral and cellular immune responses against infectious diseases. In this study, we demonstrate that vaccines formulated with L-pampo™ affect the recruitment and activation of dendritic cells (DCs) in draining lymph nodes (dLNs) and leading to antigen-specific T-cell responses and anti-tumor efficacy. We analyzed DC maturation and T-cell proliferation using flow cytometry and ELISA. We determined the effect of L-pampo™ on DCs in dLNs and antigen-specific T-cell responses using flow cytometric analysis and the ELISPOT assay. We employed murine tumor models and analyzed the anti-tumor effect of L-pampo™. We found that L-pampo™ directly enhanced the maturation and cytokine production of DCs and, consequently, T-cell proliferation. OVA or OVA peptide formulated with L-pampo™ promoted DC migration into dLNs and increased activation markers and specific DC subsets within dLNs. In addition, vaccines admixed with L-pampo™ promoted antigen-specific T-cell responses and anti-tumor efficacy. Moreover, the combination of L-pampo™ with an immune checkpoint inhibitor synergistically improved the anti-tumor effect. This study suggests that L-pampo™ can be a potent cancer vaccine adjuvant and a suitable candidate for combination immunotherapy.

11.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298575

RESUMO

Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that play important roles in the early detection of pathogen-associated molecular patterns and shaping innate and adaptive immune responses, which may influence the consequences of infection. Similarly to other viral infections, human immunodeficiency virus type 1 (HIV-1) also modulates the host TLR response; therefore, a proper understanding of the response induced by human HIV-1 or co-infection with hepatitis B virus (HBV) or hepatitis C virus (HCV), due to the common mode of transmission of these viruses, is essential for understanding HIV-1 pathogenesis during mono- or co-infection with HBV or HCV, as well as for HIV-1 cure strategies. In this review, we discuss the host TLR response during HIV-1 infection and the innate immune evasion mechanisms adopted by HIV-1 for infection establishment. We also examine changes in the host TLR response during HIV-1 co-infection with HBV or HCV; however, this type of study is extremely scarce. Moreover, we discuss studies investigating TLR agonists as latency-reverting agents and immune stimulators towards new strategies for curing HIV. This understanding will help develop a new strategy for curing HIV-1 mono-infection or co-infection with HBV or HCV.


Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Hepatite B , Hepatite C , Humanos , Hepatite B/complicações , Vírus da Hepatite B , Receptores Toll-Like , Hepacivirus , Infecções por HIV/complicações
12.
Viruses ; 15(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37243284

RESUMO

Interferon-γ (IFN-γ) is a cytokine that plays an important role in immune regulation, especially in the activation and differentiation of immune cells. Toll-like receptors (TLRs) are a family of pattern-recognition receptors that sense structural motifs related to pathogens and alert immune cells to the invasion. Both IFN-γ and TLR agonists have been used as immunoadjuvants to augment the efficacy of cancer immunotherapies and vaccines against infectious diseases or psychoactive compounds. In this study, we aimed to explore the potential of IFN-γ and TLR agonists being applied simultaneously to boost dendritic cell activation and the subsequent antigen presentation. In brief, murine dendritic cells were treated with IFN-γ and/or the TLR agonists, polyinosinic-polycytidylic acid (poly I:C), or resiquimod (R848). Next, the dendritic cells were stained for an activation marker, a cluster of differentiation 86 (CD86), and the percentage of CD86-positive cells was measured by flow cytometry. From the cytometric analysis, IFN-γ efficiently stimulated a considerable number of the dendritic cells, while the TLR agonists by themselves could merely activate a few compared to the control. The combination of IFN-γ with poly I:C or R848 triggered a higher amount of dendritic cell activation than IFN-γ alone. For instance, 10 ng/mL IFN-γ with 100 µg/mL poly I:C achieved 59.1% cell activation, which was significantly higher than the 33.4% CD86-positive cells obtained by 10 ng/mL IFN-γ. These results suggested that IFN-γ and TLR agonists could be applied as complementary systems to promote dendritic cell activation and antigen presentation. There might be a synergy between the two classes of molecules, but further investigation is warranted to ascertain the interaction of their promotive activities.


Assuntos
Interferon gama , Receptores Toll-Like , Camundongos , Animais , Interferon gama/farmacologia , Receptores Toll-Like/agonistas , Adjuvantes Imunológicos , Poli I-C/farmacologia , Células Dendríticas
13.
ACS Nano ; 17(6): 5808-5820, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36916491

RESUMO

Although cancer immunotherapy based on immune checkpoint blockade has shown promising clinical responses, the limited host response rate and systemic side effects still restrict immunotherapy efficacy. To address these challenges, here, we construct an aptamer-functionalized metal-organic framework (MOF) catalyst for bioorthogonal activation of Toll-like receptors (TLR) 7 agonists and programmed death-ligand 1 (PDL1) blockade for enhanced antitumor immunotherapy. The catalyst contains ultrasmall Pd nanoparticles enabling the local activation of TLR7 agonists in native form, which results in the remodeling of the tumor microenvironment (TME). Meanwhile, the loaded PDL1 aptamers release in response to phosphate and block the PD1/PDL1 signaling pathway between T cells and cancer cells. Thus, synergy between TLR7 agonists and PDL1 blockade induces the infiltration and activation of immune cells to initiate a robust immune response, thereby simultaneously inhibiting primary and distant metastatic tumors. The immunotherapeutic effect of our design has been demonstrated in both single and bilateral subcutaneous colorectal cancer (CT26) models. In situ bioorthogonal activation of agonists may offer an alternative approach to improve the therapeutic efficacy of immunotherapy with minimized systemic toxicity. Our work will provide good inspiration for current checkpoint blockade-based immunotherapy.


Assuntos
Neoplasias , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/agonistas , Neoplasias/tratamento farmacológico , Imunidade Inata , Adjuvantes Imunológicos , Imunoterapia/métodos , Microambiente Tumoral
14.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798234

RESUMO

Rationale: Lymphangioleiomyomatosis (LAM) is a devastating disease primarily found in women of reproductive age that leads to cancer-like cystic destruction of the lungs. Recent work has shown that LAM causes immunosuppression and that checkpoint inhibitors can be used as LAM treatment. IN lung cancer, TLR agonist, in particular TLR9 agonist CpG has been shown to be effective. Objectives: Here we investigate the use of TLR9 agonist CpG as LAM immunotherapy in combination with checkpoint inhibitor, anti-PD1 and assess induced changes in anti-LAM immunity. Methods: We used a murine model of metastatic LAM to determine survival after intranasal treatment with TLR9 agonist CpG at two doses and in combination the checkpoint inhibitor immunotherapy, anti-PD-1. We used histology and flow cytometry to assess overall inflammation as well as changes in the immune response upon treatment. Measurements and Main Results: We found that local administration of CpG enhances survival in a murine model of LAM and that a lower dose more effectively balanced the inflammation induced by CpG with the anti-LAM therapeutic benefits. We also found that CpG reduces regulatory T cell infiltration in LAM lungs and that CD4 helper T cells are skewed toward pro-inflammatory phenotypes. We also found that CpG treatment is effective in both early stage and progressive disease and that CpG is synergistic with previously tested anti-PD1 therapy. Conclusions: We have found that TLR9 agonist CpG can be used as LAM immunotherapy and effectively synergizes with anti-PD1 therapy in LAM.

15.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829109

RESUMO

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Assuntos
COVID-19 , Streptococcus pneumoniae , Criança , Humanos , Pré-Escolar , Idoso , Simulação de Acoplamento Molecular , Escherichia coli , Receptor 4 Toll-Like , Epitopos de Linfócito T/química , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Epitopos de Linfócito B , Biologia Computacional/métodos
16.
Antiviral Res ; 209: 105483, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496142

RESUMO

Hepatitis B virus remains a major medical burden with more than 250 million chronically infected patients worldwide and 900,000 deaths each year, due to the disease progression towards severe complications (cirrhosis, hepatocellular carcinoma). Despite the availability of a prophylactic vaccine, this infection is still pandemic in Western Pacific and African regions, where around 6% of the adult population is infected. Among novel anti-HBV strategies, innovative drug delivery systems, such as nanoparticle platforms to deliver vaccine antigens or therapeutic molecules have been investigated. Here, we developed polylactic acid-based biodegradable nanoparticles as an innovative and efficient vaccine. They are twice functionalized by (i) the entrapment of Pam3CSK4, an immunomodulator and ligand to Toll-Like-Receptor 1/2, and by (ii) the adsorption/coating of myristoylated (2-48) derived PreS1 from the HBV surface antigen, identified as the major viral attachment site on hepatocytes. We demonstrate that such formulations mimic HBV virion with an efficient peptide recognition by the immune system, and elicit potent and durable antibody responses in naive mice during at least one year. We also show that the most efficient in vitro viral neutralization was observed with NP-Pam3CSK4-dPreS1 sera. The immunogenicity of the derived HBV antigen is modulated by the likely synergistic action of both the dPreS1 coated nanovector and the adjuvant moiety. This formulation represents a promising vaccine alternative to fight HBV infection.


Assuntos
Vírus da Hepatite B , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Receptor 2 Toll-Like , Vacinas contra Hepatite B , Formação de Anticorpos , Adjuvantes Imunológicos , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle
17.
Vaccines (Basel) ; 12(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38250834

RESUMO

Despite the availability of effective vaccines against COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread worldwide, pressing the need for new vaccines with improved breadth and durability. We developed an adjuvanted subunit vaccine against SARS-CoV-2 using the recombinant receptor-binding domain (RBD) of spikes with synthetic adjuvants targeting TLR7/8 (INI-4001) and TLR4 (INI-2002), co-delivered with aluminum hydroxide (AH) or aluminum phosphate (AP). The formulations were characterized for the quantities of RBD, INI-4001, and INI-2002 adsorbed onto the respective aluminum salts. Results indicated that at pH 6, the uncharged RBD (5.73 ± 4.2 mV) did not efficiently adsorb to the positively charged AH (22.68 ± 7.01 mV), whereas it adsorbed efficiently to the negatively charged AP (-31.87 ± 0.33 mV). Alternatively, pre-adsorption of the TLR ligands to AH converted it to a negatively charged particle, allowing for the efficient adsorption of RBD. RBD could also be directly adsorbed to AH at a pH of 8.1, which changed the charge of the RBD to negative. INI-4001 and INI-2002 efficiently to AH. Following vaccination in C57BL/6 mice, both aluminum salts promoted Th2-mediated immunity when used as the sole adjuvant. Co-delivery with TLR4 and/or TLR7/8 ligands efficiently promoted a switch to Th1-mediated immunity instead. Measurements of viral neutralization by serum antibodies demonstrated that the addition of TLR ligands to alum also greatly improved the neutralizing antibody response. These results indicate that the addition of a TLR7/8 and/or TLR4 agonist to a subunit vaccine containing RBD antigen and alum is a promising strategy for driving a Th1 response and neutralizing antibody titers targeting SARS-CoV-2.

18.
Acta Pharm Sin B ; 12(12): 4486-4500, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561992

RESUMO

For cancer immunotherapy, triggering toll-like receptors (TLRs) in dendritic cells (DCs) can potentiate antigen-based immune responses. Nevertheless, to generate robust and long-lived immune responses, a well-designed nanovaccine should consider different locations of TLRs on DCs and co-deliver both antigens and TLR agonist combinations to synergistically induce optimal antitumor immunity. Herein, we fabricated lipid-polymer hybrid nanoparticles (LPNPs) to spatio-temporally deliver model antigen ovalbumin (OVA) on the surface of the lipid layer, TLR4 agonist monophosphoryl lipid A (MPLA) within the lipid layer, and TLR7 agonist imiquimod (IMQ) in the polymer core to synergistically activate DCs by both extra- and intra-cellular TLRs for enhancing adaptive immune responses. LPNPs-based nanovaccines exhibited a narrow size distribution at the mean diameter of 133.23 nm and zeta potential of -2.36 mV, showed a high OVA loading (around 70.83 µg/mg) and IMQ encapsulation efficiency (88.04%). Our data revealed that LPNPs-based nanovaccines showed great biocompatibility to immune cells and an excellent ability to enhance antigen internalization, thereby promoting DCs maturation and cytokines production. Compared to Free OVA, OVA-LPNPs promoted antigen uptake, lysosome escape, depot effect and migration to secondary lymphatic organs. In vivo immunization showed that IMQ-MPLA-OVA-LPNPs with dual agonists induced more powerful cellular and humoral immune responses. Moreover, prophylactic vaccination by IMQ-MPLA-OVA-LPNPs effectively suppressed tumor growth and increased survival efficacy. Hence, the nanovaccines we fabricated can effectively co-deliver antigens and different TLR agonists and realize coordinated stimulation of DCs in a spatio-temporal manner for enhanced immune responses, which provides a promising strategy for cancer immunotherapy.

19.
Int Immunopharmacol ; 112: 109238, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116151

RESUMO

During latency, DosR proteins of Mycobacterium tuberculosis (M.tb) get activated and help the bacterium to remain dormant. We have shown earlier that 2 such proteins Rv2627c and Rv2628 are immunogenic and induce a TH1 kind of immune response. In this study, through in-vitro experiments we have confirmed that Rv2627c and Rv2628 proteins act as protein Toll-Like Receptor (TLR) agonist-adjuvant. Rv2627c and Rv2628 stimulated THP-1 macrophages showed an increased expression of TLR2, TLR4 and co-stimulatory molecules CD40, CD80, CD86 and antigen presenting molecule HLA-DR. Further studies also found enhanced expression of downstream signaling molecules of TLR activation like MyD88, NF-κB-p65 and pro-inflammatory cytokines. Inhibition studies using TLR blocking antibodies decreased the expression of co-stimulatory molecules, MyD88, NF-κB-p65, and pro-inflammatory cytokines. Rv2627c and Rv2628 stimulation of HEK-TLR2 reporter cell line confirmed the interaction of these proteins with TLR2. Moreover, molecular docking and simulations of Rv2627c and Rv2628 proteins with TLR2 and TLR4 showed stable interactions. The adjuvant activity of Rv2628 was further validated by a protein adjuvanted with pre-clinically validated peptides as multi-epitope vaccine construct which showed good binding with TLR2 and TLR4 and activate dendritic cells and induce sustained pro-inflammatory cytokine response by C-ImmSim analysis. We propose that our vaccine construct will produce a better immune response than BCG and can be taken up as a post-exposure therapeutic subunit vaccine along with standard TB therapy. We also anticipate that our construct can be taken up as a protein adjuvant with other vaccine candidates as these can activate macrophages through TLR signaling.


Assuntos
Mycobacterium tuberculosis , Regulon , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Anticorpos Bloqueadores/metabolismo , Simulação de Acoplamento Molecular , Vacina BCG , Citocinas/metabolismo , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Epitopos/metabolismo
20.
J Transl Med ; 20(1): 389, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059030

RESUMO

BACKGROUND: Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS: In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS: The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS: For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.


Assuntos
COVID-19 , Streptococcus pneumoniae , Adjuvantes Imunológicos , Antígenos de Bactérias , Proteínas de Bactérias , Biologia Computacional , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Humanos , Metaloendopeptidases , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor 2 Toll-Like , Vacinas de Subunidades Antigênicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA