Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 815: 152605, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34971684

RESUMO

Understanding the chemical make-up of soils and their structure is critical for constraining the role of soil organic matter (SOM) into the global biogeochemical cycles, as well as to understand the capability of SOM to sequester carbon and mitigate greenhouse gas emissions. Here, we use two-dimensional 1H-13C heteronuclear single quantum coherence nuclear magnetic resonance (2D 1H-13C HSQC NMR) spectroscopy to structurally characterize the most refractory component of SOM, the humic acid (HA). The observations from 2D 1H-13C HSQC NMR were coupled with lignin phenol and fatty acid measurements using tetramethylammonium hydroxide (TMAH) thermochemolysis - two-dimensional gas chromatography - mass spectrometry (TMAH-GC × GC-MS). We studied humic acids extracted from an integrated Crop - Livestock - Forest System (CLFS) agricultural area and an undisturbed Atlantic Native Forest (NF) area. We evaluated soils from two different depths: the topsoil (0-20 cm) and subsoil (60-100 cm) layers, and reveal the presence of oxidized ligninaceous phenols as we had previously hypothesized. Collectively, our results indicate that there are significant oxidative processes with increasing soil depth which are more pronounced in the CLFS relative to the NF area. Degradation of stearic acid with increasing depth in the CLFS soils indicated that the CLFS is more microbiologically active than NF. Therefore, CLFS is less biochemically stable than we originally perceived. The enhanced bio-reactivity of CLFS is likely driving the enhanced carbon sequestration in the CLFS soils. This is perhaps due to the diversity of biomass remnants available at the CLFS soil rhizosphere which allows for more different types of biomass to be sequestered as oxidized ligninaceous phenols. Our results employing structural characterization with 2D 1H-13C HSQC NMR and TMAH-GC × GC-MS provide a new layer of knowledge about the practice of integrated agricultural systems and allow us to understand the structure and fate of sequestered carbon in soils from different soil environments.


Assuntos
Substâncias Húmicas , Solo , Florestas , Cromatografia Gasosa-Espectrometria de Massas , Substâncias Húmicas/análise , Espectroscopia de Ressonância Magnética , Compostos de Amônio Quaternário
2.
Astrobiology ; 21(3): 279-297, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33306917

RESUMO

The Mars Organic Molecule Analyzer (MOMA) and Sample Analysis at Mars (SAM) instruments onboard the Exomars 2022 and Mars Science Laboratory rovers, respectively, are capable of organic matter detection and differentiating potentially biogenic from abiotic organics in martian samples. To identify organics, both these instruments utilize pyrolysis-gas chromatography coupled to mass spectrometry, and the thermochemolysis agent tetramethylammonium hydroxide (TMAH) is also used to increase organic volatility. However, the reactivity and efficiency of TMAH thermochemolysis are affected by the presence of calcium perchlorate on the martian surface. In this study, we determined the products of TMAH pyrolysis in the presence and absence of calcium perchlorate at different heating rates (flash pyrolysis and SAM-like ramp pyrolysis with a 35°C·min-1 heating rate). The decomposition mechanism of TMAH pyrolysis in the presence of calcium perchlorate was studied by using stepped pyrolysis. Moreover, the effect of calcium perchlorate (at Mars-relevant concentrations) on the recovery rate of fatty acids with TMAH thermochemolysis was studied. Results demonstrate that flash pyrolysis yields more diversity and greater abundances of TMAH thermochemolysis products than does the SAM-like ramp pyrolysis method. There is no obvious effect of calcium perchlorate on TMAH degradation when the [ClO4-] is lower than 10 weight percent (wt %). Most importantly, the presence of calcium perchlorate does not significantly impact the recovery rate of fatty acids with TMAH thermochemolysis under laboratory conditions, which is promising for the detection of fatty acids via TMAH thermochemolysis with the SAM and MOMA instruments on Mars.


Assuntos
Marte , Percloratos , Cálcio , Meio Ambiente Extraterreno , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Amônio Quaternário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA