Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
2.
Am J Transl Res ; 16(8): 4120-4133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262688

RESUMO

BACKGROUND: Breast cancer (BRCA) is one of the most common cancers in women and is the leading cause of cancer-related deaths in women. TNFSF12, originally a member of the TNF superfamily, is considered a key molecule that is associated with poor prognosis of many cancers. However, its role in progression of BRCA remains unclear. METHODS: In this study, the expression profile and clinical information of TNFSF12 across various cancers were obtained from The Cancer Genome Atlas (TCGA) database. Differences in TNFSF12 expression levels between carcinoma and paraneoplastic cancers were compared, and its association with prognosis was examined. Functional enrichment analysis was conducted to explore the potential signaling pathways and biological functions linked with TNFSF12. Moreover, the correlation between TNFSF12 and immune cell infiltration, response to immune checkpoint inhibitors (ICIs), and response to chemotherapy were evaluated. TNFSF12 level in BRCA and normal serum was detected by ELISA. RESULTS: TNFSF12 was lowly expressed in BRCA and is significantly associated with PAM50. TNFSF12 low expression correlates with poor overall survival, particularly among HER2-positive patients. Patients with high level of TNFSF12 expression are usually accompanied with elevated levels of various immune cells, including CD8 T cells, cytotoxic cells, DCs, eosinophils, iDCs, mast cells, neutrophils, NK CD56bright cells, NK cells, pDC, T cells, Tem, and TFH Th17 cells, and exhibit sensitivity to immune checkpoint inhibitors. Functional enrichment analysis indicates significant activation of KRAS signaling, TNFA signaling via NFKB, and epithelial-mesenchymal transition (EMT) in the high TNFSF12 expression group, while MTORC1 signaling, MYC, G2M checkpoint, and E2F targets are inhibited. Furthermore, patients in the low expression group demonstrate higher sensitivity to paclitaxel and rapamycin, whereas those in the high expression group show increased sensitivity to erlotinib and foretinib. ELISA analysis also confirmed a significant decrease of TNFSF12 protein levels in BRCA patients. CONCLUSION: This study presents a comprehensive analysis of the close correlation between TNFSF12 and prognosis, immune response, as well as the effectiveness of chemotherapeutic agents in BRCA patients.

3.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098466

RESUMO

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Assuntos
Condrócitos , Ferroptose , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Osteoartrite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptor da Anafilatoxina C5a , Animais , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase (Desciclizante)
4.
Allergy Asthma Immunol Res ; 16(4): 399-421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39155739

RESUMO

PURPOSE: Asthma, an airway inflammatory disease, involves multiple tumor necrosis factors (TNF). TNF ligand superfamily member 11 (TNFSF11) and its known receptor, TNF receptor superfamily 11A (TNFRSF11A), has been implicated in asthma; however, the related mechanisms remain unknown. METHODS: The serum and bronchial airway of patients with asthma and healthy subjects were examined. The air-liquid interface of primary human bronchial epithelial (HBE) cells, and Tnfsf11+/- mouse, Tnfrsf11a+/- mouse, and a humanized HSC-NOG-EXL mouse model were established. This study constructed short hairpin RNA (shRNA) of TNFSF11, TNFRSF11A, transforming growth factor ß1 (TGFß1), and transforming growth factor ß receptor type 1 (TGFßR1) using lentivirus to further examine the ability of TNFSF11 protein. RESULTS: This study was the first to uncover TNFSF11 overexpression in the airway and serum of asthmatic human subjects, and the TNFSF11 in serum was closely correlated with lung function. The TNFSF11/TNFRSF11A axis deficiency in Tnfsf11+/- or Tnfrsf11a+/- mice remarkably attenuated the house dust mite (HDM)-induced signal transducer and activator of transcription 3 (STAT3) action and remodeling protein expression. Similarly, the HDM-induced STAT3 action and remodeling protein expression in HBE cells decreased after pretreatment with TNFSF11 or TNFRSF11A shRNA. Meanwhile, the expression of the remodeling proteins induced by TNFSF11 significantly decreased after pretreatment with-stattic (inhibitor of STAT3 phosphorylation) in HBE cells. The STAT3 phosphorylation and remodeling protein expression induced by TNFSF11 obviously decreased after pretreatment with TGFß1 or TGFßR1 shRNA in HBE cells. The above results also verified that blocking TNFSF11 with denosumab alleviated airway remodeling via the TGFß1/STAT3 signaling in the humanized HSC-NOG-EXL mice with HDM-induced asthma. CONCLUSIONS: TGFß1/STAT3 action was closely correlated with TNFSF11/TNFRSF11A axis-mediated airway remodeling. This study presented a novel strategy that blocks the TNFSF11/TNFRSF11A axis to exert a protective effect against asthma.

5.
IUBMB Life ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012196

RESUMO

Osteoporosis (OP) is a systemic metabolic bone disease resulting in reduced bone strength and increased susceptibility to fractures, making it a significant public health and economic problem worldwide. The clinical use of anti-osteoporosis agents is limited because of their serious side effects or the high cost of long-term use. The Xianlinggubao (XLGB) formula is an effective traditional Chinese herbal medicine commonly used in orthopedics to treat osteoporosis; however, its mechanism of action remains unclear. In this study, we screened 40 small RNAs derived from XLGB capsules and found that XLGB28-sRNA targeting TNFSF11 exerted a significant anti-osteoporosis effect in vitro and in vivo by simultaneously promoting osteogenesis and inhibiting osteoclastogenesis. Oral administration of bencaosome [16:0 Lyso PA+XLGB28-sRNA] effectively improved bone mineral density and reduced the damage to the bone microstructure in mice. These results suggest that XLGB28-sRNA may be a novel oligonucleotide drug that promotes osteogenesis and inhibits osteoclastogenesis in mice.

6.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000552

RESUMO

Combination therapy of nivolumab and ipilimumab (NIVO + IPI) for metastatic renal cell carcinoma (mRCC) has shown efficacy, but approximately 20% of patients experience disease progression in the early stages of treatment. No useful biomarkers have been reported to date. Therefore, it is desirable to identify biomarkers to predict treatment responses in advance. We examined the tumor microenvironment (TME)-related gene expression in mRCC patients treated with NIVO + IPI, between the response and non-response groups, using tumor tissues, before administering NIVO + IPI. In TME-related genes, TNFSF9 expression was identified as a candidate for the predictive biomarker. Its expression discriminated between the response and non-response groups with 88.89% sensitivity and 87.50% specificity (AUC = 0.9444). We further analyzed the roles of TNFSF9 in TME using bioinformatics from The Cancer Genome Atlas (TCGA) cohort. An adaptive immune response was activated in the TNFSF9-high-expression tumors. Indeed, T follicular helper cells, plasma B cells, and tumor-infiltrating CD8+ T cells were increased in the tumors, which indicates the promotion of humoral immunity due to enhanced T-B interactions. However, as the number of regulatory T cells (Treg) increased in the tumors, the percentage of dysfunctional T cells also increased. This suggests that not only PD-1 but also CTLA-4 inhibition may have suppressed Treg activation and improved the therapeutic effect in the TNFSF9 high-expression tumors. Therefore, TNFSF9 may predict the therapeutic efficacy of NIVO + IPI for mRCC and allow more appropriate patient selection.


Assuntos
Carcinoma de Células Renais , Ipilimumab , Neoplasias Renais , Nivolumabe , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Ipilimumab/administração & dosagem , Ipilimumab/uso terapêutico , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
7.
Theriogenology ; 226: 277-285, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954996

RESUMO

Tumour necrosis factor (TNF) superfamily member 11 (TNFSF11), also known as RANKL, plays a crucial role in regulating several physiological and pathological activities. Additionally, it is a vital factor in bone physiology, and the sex hormone progesterone regulates the expansion of stem cells and the proliferation of mammary epithelial cells. It is essential for animal growth and reproductive physiological processes. This study aimed to evaluate the tissue-specific expression characteristics and promoter activity of the TNFSF11 gene in pigs. As a result, the study examined the presence of TNFSF11 expression in the tissues of Xiangsu pigs at 0.6 and 12 months of age. Moreover, the core promoter region of TNFSF11 was also identified by utilizing a combination of bioinformatic prediction and dual-luciferase activity tests. Finally, the effect of transcription factors on the transcriptional activity of the core promoter region was determined using site-directed mutagenesis. TNFSF11 was uniformly expressed in all tissues; however, its expression in muscles was comparatively low. The core promoter region of TNFSF11 was located in the -555 to -1 region. The prediction of the transcription start site of TNFSF11 gene-2000 ∼ + 500bp showed that there was a CpG site in 17 ∼ + 487bp. Analysis of mutations in the transcription factor binding sites revealed that mutations in the Stat5b, Myog, Trl, and EN1 binding sites had significant effects on the transcriptional activity of the TNFSF11 gene, particularly following the EN1 binding site mutation (P < 0.001). This study provides insights into both the tissue-specific expression patterns of TNFSF11 in the tissues of Xiangsu pigs and the potential regulatory effects of transcription factors on its promoter activity. These results may be helpful for future research aimed at clarifying the expression and role of the porcine TNFSF11 gene.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Ligante RANK , Animais , Suínos/genética , Ligante RANK/genética , Ligante RANK/metabolismo
8.
J Transl Med ; 22(1): 698, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075394

RESUMO

BACKGROUND: Severe COVID-19 infection has been associated with the development of pulmonary fibrosis, a condition that significantly affects patient prognosis. Understanding the underlying cellular communication mechanisms contributing to this fibrotic process is crucial. OBJECTIVE: In this study, we aimed to investigate the role of the TNFSF12-TNFRSF12A pathway in mediating communication between alveolar macrophages and fibroblasts, and its implications for the development of pulmonary fibrosis in severe COVID-19 patients. METHODS: We conducted single-cell RNA sequencing (scRNA-seq) analysis using lung tissue samples from severe COVID-19 patients and healthy controls. The data was processed, analyzed, and cell types were annotated. We focused on the communication between alveolar macrophages and fibroblasts and identified key signaling pathways. In vitro experiments were performed to validate our findings, including the impact of TNFRSF12A silencing on fibrosis reversal. RESULTS: Our analysis revealed that in severe COVID-19 patients, alveolar macrophages communicate with fibroblasts primarily through the TNFSF12-TNFRSF12A pathway. This communication pathway promotes fibroblast proliferation and expression of fibrotic factors. Importantly, silencing TNFRSF12A effectively reversed the pro-proliferative and pro-fibrotic effects of alveolar macrophages. CONCLUSION: The TNFSF12-TNFRSF12A pathway plays a central role in alveolar macrophage-fibroblast communication and contributes to pulmonary fibrosis in severe COVID-19 patients. Silencing TNFRSF12A represents a potential therapeutic strategy for mitigating fibrosis in severe COVID-19 lung disease.


Assuntos
COVID-19 , Fibroblastos , Macrófagos Alveolares , Fibrose Pulmonar , Transdução de Sinais , Receptor de TWEAK , Humanos , COVID-19/complicações , COVID-19/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/complicações , Receptor de TWEAK/metabolismo , Receptor de TWEAK/genética , Citocina TWEAK/metabolismo , Comunicação Celular , Masculino , SARS-CoV-2 , Feminino , Pessoa de Meia-Idade , Proliferação de Células , Pulmão/patologia , Índice de Gravidade de Doença
9.
Front Neurol ; 15: 1388920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872823

RESUMO

Background: Epilepsy is one of the most prevalent serious brain disorders globally, impacting over 70 million individuals. Observational studies have increasingly recognized the impact of plasma lipidome on epilepsy. However, establishing a direct causal link between plasma lipidome and epilepsy remains elusive due to inherent confounders and the complexities of reverse causality. This study aims to investigate the causal relationship between specific plasma lipidome and epilepsy, along with their intermediary mediators. Methods: We conducted a two-sample Mendelian randomization (MR) and mediation MR analysis to evaluate the causal effects of 179 plasma lipidomes and epilepsy, with a focus on the inflammatory cytokine as a potential mediator based on the genome-wide association study. The primary methodological approach utilized inverse variance weighting, complemented by a range of other estimators. A set of sensitivity analyses, including Cochran's Q test, I 2 statistics, MR-Egger intercept test, MR-PRESSO global test and leave-one-out sensitivity analyses was performed to assess the robustness, heterogeneity and horizontal pleiotropy of results. Results: Our findings revealed a positive correlation between Phosphatidylcholine (18:1_18:1) levels with epilepsy risk (OR = 1.105, 95% CI: 1.036-1.178, p = 0.002). Notably, our mediation MR results propose Tumor necrosis factor ligand superfamily member 12 levels (TNFSF12) as a mediator of the relationship between Phosphatidylcholine (18,1_18:1) levels and epilepsy risk, explaining a mediation proportion of 4.58% [mediation effect: (b = 0.00455, 95% CI: -0.00120-0.01030), Z = 1.552]. Conclusion: Our research confirms a genetic causal relationship between Phosphatidylcholine (18:1_18:1) levels and epilepsy, emphasizing the potential mediating role of TNFSF12 and provide valuable insights for future clinical investigations into epilepsy.

10.
Sci Rep ; 14(1): 14892, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937503

RESUMO

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Assuntos
COVID-19 , Citocinas , Aprendizado de Máquina , Humanos , COVID-19/diagnóstico , Citocinas/sangue , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Programas de Rastreamento/métodos , Masculino , Feminino , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Adulto , Idoso
11.
Biologics ; 18: 95-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715569

RESUMO

Background: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with numerous clinical manifestations. Organ involvement can aggravate patients with SLE and cause comorbidities such as atherosclerosis. Recently, the TNFSF13B gene has been found to be linked with SLE events. This study aimed to analyze the association between single nucleotide polymorphisms of the TNFSF13B rs9514828 with incidence of atherosclerosis and therapeutic outcomes in patients with SLE. Patients and Methods: This case-control study included 84 SLE patients, of whom 21 patients with SLE with atherosclerosis and 63 patients with SLE without atherosclerosis. Using enzyme-linked immunosorbent assay method, interleukin-6 and interferon gamma levels were quantified. The TNFSF13B gene polymorphism was evaluated using polymerase chain reaction followed by sequencing. The lupus low disease activity state (LLDAS) criteria were used to measure the therapeutic outcomes. Statistical analysis was conducted using binary logistic regression. Results: The genetic variations of TNFSF13B rs9514828 were CC = 35, CT = 41, and TT = 8. There was an association between TNFSF13B rs9514828 C>T polymorphism in patients with SLE with and without atherosclerosis (p = 0.03; odds ratio (OR) 4.72, 95% confidence interval [CI] 1.22-18.37). Furthermore, the TNFSF13B rs9514828 C>T polymorphism had association with the therapeutic outcomes of patients with SLE who manifested with LLDAS (p = 0.00; OR 7.58, 95% CI 2.61-21.99). Conclusion: The association of TNFSF13B rs9514828 C>T polymorphism and incidence of atherosclerosis as well as the therapeutic outcomes in patients with SLE indicate the potential utility of the gene variation as screening tool to employ personalized medicine to undertake preventive measures in order to prevent atherosclerosis and to predict a poor prognosis in SLE patient.

12.
J Biochem Mol Toxicol ; 38(4): e23707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622979

RESUMO

Heart failure remains a global threaten to public health, cardiac fibrosis being a crucial event during the development and progression of heart failure. Reportedly, M2 macrophages might affect endothelial cell (ECs) and fibroblast proliferation and functions through paracrine signaling, participating in myocardial fibrosis. In this study, differentially expressed paracrine factors between M0/1 and M2 macrophages were analyzed and the expression of TNFSF13 was most significant in M2 macrophages. Culture medium (CM) of M2 (M2 CM) coculture to ECs and cardiac fibroblasts (CFbs) significantly promoted the cell proliferation of ECs and CFbs, respectively, and elevated α-smooth muscle actin (α-SMA), collagen I, and vimentin levels within both cell lines; moreover, M2 CM-induced changes in ECs and CFbs were partially abolished by TNFSF13 knockdown in M2 macrophages. Lastly, the NF-κB and Akt signaling pathways were proved to participate in TNFSF13-mediated M2 CM effects on ECs and CFbs. In conclusion, TNFSF13, a paracrine factor upregulated in M2 macrophages, could mediate the promotive effects of M2 CM on EC and CFb proliferation and fibrogenic alterations.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Cardiomiopatias/metabolismo , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
13.
J Transl Med ; 22(1): 340, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594779

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), the most common and lethal subtype of lung cancer, continues to be a major health concern worldwide. Despite advances in targeted and immune therapies, only a minority of patients derive substantial benefits. As a result, the urgent need for novel therapeutic strategies to improve lung cancer treatment outcomes remains undiminished. METHODS: In our study, we employed the TIMER database to scrutinize TNFSF11 expression across various cancer types. We further examined the differential expression of TNFSF11 in normal and tumor tissues utilizing the TCGA-LUAD dataset and tissue microarray, and probed the associations between TNFSF11 expression and clinicopathological parameters within the TCGA-LUAD dataset. We used the GSE31210 dataset for external validation. To identify genes strongly linked to TNFSF11, we engaged LinkedOmics and conducted a KEGG pathway enrichment analysis using the WEB-based Gene SeT AnaLysis Toolkit. Moreover, we investigated the function of TNFSF11 through gene knockdown or overexpression approaches and explore its function in tumor cells. The therapeutic impact of ferroptosis inducers in tumors overexpressing TNFSF11 were also investigated through in vivo and in vitro experiments. Through these extensive analyses, we shed light on the potential role of TNFSF11 in lung adenocarcinoma, underscoring potential therapeutic targets for this malignancy. RESULTS: This research uncovers the overexpression of TNFSF11 in LUAD patients and its inverse correlation with peroxisome-related enzymes. By utilizing gene knockdown or overexpression assays, we found that TNFSF11 was negatively associated with GPX4. Furthermore, cells with TNFSF11 overexpression were relatively more sensitive to the ferroptosis inducers. CONCLUSIONS: Our research has provided valuable insights into the role of TNFSF11, revealing its negative regulation of GPX4, which could be influential in crafting therapeutic strategies. These findings set the stage for further exploration into the mechanisms underpinning the relationship between TNFSF11 and GPX4, potentially opening up new avenues for precision medicine in the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Ferroptose , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Bioensaio , Bases de Dados Factuais , Ferroptose/genética , Neoplasias Pulmonares/genética , Ligante RANK
14.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561797

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
15.
EMBO J ; 43(9): 1722-1739, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580775

RESUMO

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Megacariócitos , Animais , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Hematopoese/fisiologia , Mesonefro/embriologia , Mesonefro/metabolismo , Mesonefro/citologia , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Técnicas de Cocultura
16.
Life Sci Space Res (Amst) ; 41: 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670639

RESUMO

Understanding how skeletal tissues respond to microgravity is ever more important with the increased interest in human space travel. Here, we exposed larval Danio rerio at 3.5 dpf to simulated microgravity (SMG) using a 3D mode of rotation in a ground-based experiment and then studied different cellular, molecular, and morphological bone responses both immediately after exposure and one week later. Our results indicate an overall decrease in ossification in several developing skeletal elements immediately after SMG exposure with the exception of the otoliths, however ossification returns to normal levels seven days after exposure. Coincident with the reduction in overall ossification tnfsf11 (RANKL) expression is highly elevated after 24 h of SMG exposure and also returns to normal levels seven days after exposure. We also show that genes associated with osteoblasts are unaffected immediately after SMG exposure. Thus, the observed reduction in ossification is primarily the result of a high level of bone resorption. This study sheds insight into the nuances of how osteoblasts and osteoclasts in the skeleton of a vertebrate organism respond to an external environmental disturbance, in this case simulated microgravity.


Assuntos
Larva , Osteogênese , Simulação de Ausência de Peso , Peixe-Zebra , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Ligante RANK/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Ausência de Peso/efeitos adversos
17.
Int Immunopharmacol ; 132: 112017, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599101

RESUMO

BACKGROUND: Establishment of a reliable prognostic model and identification of novel biomarkers are urgently needed to develop precise therapy strategies for clear cell renal cell carcinoma (ccRCC). Stress response stated T cells (Tstr) are a new T-cell subtype, which are related to poor disease stage and immunotherapy response in various cancers. METHODS: 10 machine-learning algorithms and their combinations were applied in this work. A stable Tstr-related score (TCs) was constructed to predict the outcomes and PD-1 blockade treatment response in ccRCC patients. A nomogram based on TCs for personalized prediction of patient prognosis was constructed. Functional enrichment analysis and TimiGP algorithm were used to explore the underlying role of Tstr in ccRCC. The key TCs-related gene was identified by comprehensive analysis, and the bioinformatics results were verified by immunohistochemistry using a tissue microarray. RESULTS: A robust TCs was constructed and validated in four independent cohorts. TCs accurately predicted the prognosis and PD-1 blockade treatment response in ccRCC patients. The novel nomogram was able to precisely predict the outcomes of ccRCC patients. The underlying biological process of Tstr was related to acute inflammatory response and acute-phase response. Mast cells were identified to be involved in the role of Tstr as a protective factor in ccRCC. TNFS13B was shown to be the key TCs-related gene, which was an independent predictor of unfavorable prognosis. The protein expression analysis of TNFSF13B was consistent with the mRNA analysis results. High expression of TNFSF13B was associated with poor response to PD-1 blockade treatment. CONCLUSIONS: This study provides a Tstr cell-related score for predicting outcomes and PD-1 blockade therapy response in ccRCC. Tstr cells may exert their pro-tumoral role in ccRCC, acting against mast cells, in the acute inflammatory tumor microenvironment. TNFSF13B could serve as a key biomarker related to TCs.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Aprendizado de Máquina , Carcinoma de Células Renais/imunologia , Humanos , Neoplasias Renais/imunologia , Prognóstico , Masculino , Feminino , Nomogramas , Biomarcadores Tumorais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T/imunologia
18.
Biomolecules ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38540714

RESUMO

Eosinophilic asthma is the most prevalent and well-defined phenotype of asthma. Despite a majority of patients responding to corticosteroid therapy and T2 biologics, there remains a subset that have recurrent asthma exacerbations, highlighting a need for additional therapies to fully ameliorate airway eosinophilia. Group 2 innate lymphoid cells (ILC2) are considered key players in the pathogenesis of eosinophilic asthma through the production of copious amounts of type 2 cytokines, namely IL-5 and IL-13. ILC2 numbers are increased in the airways of asthmatics and with the greatest numbers of activated ILC2 detected in sputa from severe prednisone-dependent asthma with uncontrolled eosinophilia. Although epithelial-derived cytokines are important mediators of ILC2 activation, emerging evidence suggests that additional pathways stimulate ILC2 function. The tumor necrosis factor super family (TNFSF) and its receptors (TNFRSF) promote ILC2 activity. In this review, we discuss evidence supporting a relationship between ILC2 and TNFSF/TNFRSF axis in eosinophilic asthma and the role of this relationship in severe asthma with airway autoimmune responses.


Assuntos
Asma , Eosinofilia Pulmonar , Humanos , Imunidade Inata , Linfócitos/metabolismo , Citocinas/metabolismo
19.
J Neurochem ; 168(6): 1030-1044, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38344886

RESUMO

In this study, we investigated the potential involvement of TNFSF9 in reperfusion injury associated with ferroptosis in acute ischaemic stroke patients, mouse models and BV2 microglia. We first examined TNFSF9 changes in peripheral blood from stroke patients with successful reperfusion, and constructed oxygen-glucose deprivation-reperfusion (OGD-R) on BV2 microglia, oxygen-glucose deprivation for 6 h followed by reoxygenation and re-glucose for 24 h, and appropriate over-expression or knockdown of TNFSF9 manipulation on BV2 cells and found that in the case of BV2 cells encountering OGD-R over-expression of TNFSF9 resulted in increased BV2 apoptosis. Still, the knockdown of TNFSF9 ameliorated apoptosis and ferroptosis. In an in vivo experiment, we constructed TNFSF9 over-expression or knockout mice by intracerebral injection of TNFSF9-OE or sh-TNFSF9 adenovirus. We performed the middle cerebral artery occlusion (MCAO) model on day four, 24 h after ligation of the proximal artery, for half an hour to recanalize. As luck would have it, over-expression of TNFSF9 resulted in increased brain infarct volumes, neurological function scores and abnormalities in TNFSF9-related TRAF1 and ferroptosis-related pathways, but knockdown of TNFSF9 improved brain infarcts in mice as well as reversing TNFSF9-related signalling pathways. In conclusion, our data provide the first evidence that TNFSF9 triggers microglia activation by activating the ferroptosis signalling pathway following ischaemic stroke, leading to brain injury and neurological deficits.


Assuntos
Ferroptose , AVC Isquêmico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Progressão da Doença , Ferroptose/fisiologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Microglia/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
20.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255789

RESUMO

LIGHT/TNFSF14 is linked to several signaling pathways as a crucial member of a larger immunoregulatory network. It is primarily expressed in inflammatory effector cells, and high levels of LIGHT have been reported in obesity. Thus, with the aim of deepening the knowledge of the role of LIGHT on adipose tissue phenotype, we studied wild-type (WT), Tnfsf14-/-, Rag-/- and Rag-/Tnfsf14- (DKO) mice fed a normal diet (ND) or high-fat diet (HFD). Our results show that, although there is no significant weight gain between the mice with different genotypes, it is significant within each of them. We also detected an increase in visceral White Adipose Tissue (vWAT) weight in all mice fed HFD, together with the lowest levels of vWAT weight in Tnfsf14-/- and DKO mice fed ND with respect to the other strain. Inguinal WAT (iWAT) weight is significantly affected by genotype and HFD. The least amount of iWAT was detected in DKO mice fed ND. Histological analysis of vWAT showed that both the genotype and the diet significantly affect the adipocyte area, whereas the number is affected only by the genotype. In iWAT, the genotype and the diet significantly affect mean adipocyte area and number; interestingly, the area with the least adipocyte was detected in DKO mice fed ND, suggesting a potential browning effect due to the simultaneous lack of mature lymphocytes and LIGHT. Consistently, Uncoupling Protein 1 (UCP1) staining of iWAT demonstrated that few positive brown adipocytes appeared in DKO mice. Furthermore, LIGHT deficiency is associated with greater levels of UCP1, highlighting the lack of its expression in Rag-/- mice. Liver examination showed that all mice fed HFD had a steatotic liver, but it was particularly evident for DKO mice. In conclusion, our study demonstrates that the adipose tissue phenotype is affected by LIGHT levels but also much more by mature lymphocytes.


Assuntos
Tecido Adiposo Branco , Tecido Adiposo , Animais , Camundongos , Adipócitos Marrons , Genótipo , Fenótipo , Proteína Desacopladora 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA