Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790192

RESUMO

TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.


Assuntos
Hematopoese , Humanos , Animais , Hematopoese/genética , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento
2.
Am J Bot ; 109(5): 706-726, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526278

RESUMO

PREMISE: Accurate species delimitation is essential for evolutionary biology, conservation, and biodiversity management. We studied species delimitation in North American pinyon pines, Pinus subsection Cembroides, a natural group with high levels of incomplete lineage sorting. METHODS: We used coalescent-based methods and multivariate analyses of low-copy number nuclear genes and nearly complete high-copy number plastomes generated with the Hyb-Seq method. The three coalescent-based species delimitation methods evaluated were the Generalized Mixed Yule Coalescent (GMYC), Poisson Tree Process (PTP), and Trinomial Distribution of Triplets (Tr2). We also measured admixture in populations with possible introgression. RESULTS: Our results show inconsistencies among GMYC, PTP, and Tr2. The single-locus based GMYC analysis of plastid DNA recovered a higher number of species (up to 24 entities, including singleton lineages and clusters) than PTP and the multi-locus coalescent approach. The PTP analysis identified 10 species whereas Tr2 recovered 13, which agreed closely with taxonomic treatments. CONCLUSIONS: We found that PTP and GMYC identified species with low levels of ILS and high morphological divergence (P. maximartinezii, P. pinceana, and P. rzedowskii). However, GMYC method oversplit species by identification of more divergent samples as singletons. Moreover, both PTP and GMYC were incapable of identifying some species that are readily identified morphologically. We suggest that the divergence times between lineages within North American pinyon pines are so disparate that GMYC results are unreliable. Results of the Tr2 method coincided well with previous delimitations based on morphology, DNA, geography, and secondary chemistry.


Assuntos
Núcleo Celular , Pinus , Núcleo Celular/genética , DNA , América do Norte , Filogenia , Pinus/genética
3.
Genes Dev ; 32(23-24): 1537-1549, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463901

RESUMO

Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the ß-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.


Assuntos
Regulação da Expressão Gênica/genética , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , gama-Globinas/genética , Sítios de Ligação , Linhagem Celular , Ativação Enzimática/genética , Epigênese Genética/genética , Células Eritroides/metabolismo , Inativação Gênica , Células HEK293 , Humanos , Células K562 , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/metabolismo , Domínios Proteicos , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo
4.
Curr Top Dev Biol ; 125: 357-373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527578

RESUMO

Testicular nuclear receptors 2 and 4 (TR2, TR4), also known as NR2C1 and NR2C2, belong to the nuclear receptor superfamily and were first cloned in 1989 and 1994, respectively. Although classified as orphan receptors, several natural molecules, their metabolites, and synthetic compounds including polyunsaturated fatty acids (PUFAs), PUFA metabolites 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic acid, and the antidiabetic drug thiazolidinediones can transactivate TR4. Importantly, many of these ligands/activators can also transactivate peroxisome proliferator-activated receptor gamma (PPARγ), also known as NR1C3 nuclear receptor. Both TR4 and PPARγ can bind to similar hormone response elements (HREs) located in the promoter of their common downstream target genes. However, these two nuclear receptors, even with shared ligands/activators and shared binding ability for similar HREs, have some distinct functions in many diseases they influence. In cancer, PPARγ inhibits thyroid, lung, colon, and prostate cancers but enhances bladder cancer. In contrast, TR4 inhibits liver and prostate cancer initiation but enhances pituitary corticotroph, liver, and prostate cancer progression. In type 2 diabetes, PPARγ increases insulin sensitivity but TR4 decreases insulin sensitivity. In cardiovascular disease, PPARγ inhibits atherosclerosis but TR4 enhances atherosclerosis through increasing foam cell formation. In bone physiology, PPARγ inhibits bone formation but TR4 increases bone formation. Together, the contrasting impact of TR4 and PPARγ on different diseases may raise a critical issue about drug used to target any one of these nuclear receptors.


Assuntos
Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares , Membro 2 do Grupo C da Subfamília 2 de Receptores Nucleares , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Especificidade de Órgãos , PPAR gama/metabolismo , Neoplasias da Próstata/metabolismo
5.
Genetics ; 203(2): 905-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27075724

RESUMO

Genes encoding nuclear receptors (NRs) are attractive as candidates for investigating the evolution of gene regulation because they (1) have a direct effect on gene expression and (2) modulate many cellular processes that underlie development. We employed a three-phase investigation linking NR molecular evolution among primates with direct experimental assessment of NR function. Phase 1 was an analysis of NR domain evolution and the results were used to guide the design of phase 2, a codon-model-based survey for alterations of natural selection within the hominids. By using a series of reliability and robustness analyses we selected a single gene, NR2C1, as the best candidate for experimental assessment. We carried out assays to determine whether changes between the ancestral and extant NR2C1s could have impacted stem cell pluripotency (phase 3). We evaluated human, chimpanzee, and ancestral NR2C1 for transcriptional modulation of Oct4 and Nanog (key regulators of pluripotency and cell lineage commitment), promoter activity for Pepck (a proxy for differentiation in numerous cell types), and average size of embryological stem cell colonies (a proxy for the self-renewal capacity of pluripotent cells). Results supported the signal for alteration of natural selection identified in phase 2. We suggest that adaptive evolution of gene regulation has impacted several aspects of pluripotentiality within primates. Our study illustrates that the combination of targeted evolutionary surveys and experimental analysis is an effective strategy for investigating the evolution of gene regulation with respect to developmental phenotypes.


Assuntos
Diferenciação Celular/genética , Evolução Molecular , Hominidae/genética , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/genética , Células-Tronco Pluripotentes/citologia , Animais , Linhagem Celular , Sequência Conservada , Humanos , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/química , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Células-Tronco Pluripotentes/metabolismo , Domínios Proteicos
6.
Gene Expr Patterns ; 20(1): 71-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26712358

RESUMO

Comparative genomic analysis of the nuclear receptor family suggests that the testicular receptor 2, Nr2c1, undergoes positive selection in the human-chimpanzee clade based upon a significant increase in nonsynonymous compared to synonymous substitutions. Previous in situ analyses of Nr2c1 lacked the temporal range and spatial resolution necessary to characterize cellular expression of this gene from early to mid gestation, when many nuclear receptors are key regulators of tissue specific stem or progenitor cells. Thus, we asked whether Nr2c1 protein is associated with stem cell populations in the mid-gestation mouse embryo. Nr2c1 is robustly expressed in the developing olfactory epithelium. Its expression in the olfactory epithelium shifts from multiple progenitor classes at early stages to primarily transit amplifying cells later in olfactory epithelium development. In the early developing central nervous system, Nr2c1 is limited to the anterior telencephalon/olfactory bulb anlagen, coincident with Nestin-positive neuroepithelial stem cells. Nr2c1 is also seen in additional cranial sensory specializations including cells surrounding the mystacial vibrissae, the retinal pigment epithelium and Scarpa's ganglion. Nr2c1 was also detected in a subset of mesenchymal cells in developing teeth and cranial bones. The timing and distribution of embryonic expression suggests that Nr2c1 is primarily associated with the early genesis of mammalian cranial sensory neurons and craniofacial skeletal structures. Thus, Nr2c1 may be a candidate for mediating parallel adaptive changes in cranial neural sensory specializations such as the olfactory epithelium, retina and mystacial vibrissae and in non-neural craniofacial features including teeth.


Assuntos
Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares/biossíntese , Mucosa Olfatória/embriologia , Crânio/embriologia , Células-Tronco/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Ossos Faciais/embriologia , Ossos Faciais/metabolismo , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/metabolismo , Perfilação da Expressão Gênica , Camundongos , Células-Tronco Neurais/metabolismo , Bulbo Olfatório/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Crânio/citologia , Crânio/metabolismo , Telencéfalo/metabolismo , Dente/embriologia , Dente/metabolismo
7.
Nano Lett ; 15(4): 2409-16, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25764379

RESUMO

Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface.

8.
Transcription ; 4(4): 158-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23863198

RESUMO

Non-canonical cytoplasmic activities and signal transduction of retinoic acid (RA) expand RA's pleiotropic effects in coordinating the epigenome in embryonic stem cell (ESC). Examples include RA-bound cellular retinoic acid binding protein I, which activates ERK2. By engaging both cytosolic and nuclear mediators, RA can efficiently augment ESC's epigenome.


Assuntos
Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Tretinoína/farmacologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Proteomics Clin Appl ; 3(2): 279-85, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26238624

RESUMO

Testicular receptor 2 (TR2) belongs to the nuclear receptor superfamily that constitutes one of the largest transcription factor families. Due to the lack of specific ligands for TR2 and because TR2 gene knockout mice exhibited no apparent pathological phenotypes in laboratories, it has been a challenge to pursue studies of this mysterious nuclear receptor. Recently, using gene knockdown approaches, we were able to detect its specific biological activity, primarily, in the maintenance of proliferation potential of embryonic stem cells. Further, with proteomic approaches, we have uncovered extensive PTMs of TR2. Specific PTMs of TR2 could differentially regulate its biological activity mediated by multiple signaling pathways including one elicited by the nongenomic action of retinoic acid. These PTMs are involved in TR2 activation, repression, DNA-binding, protein stability, and subcellular distribution. The confirmed PTMs that have a functional consequence on the activity/property of TR2 include phosphorylation, ubiquitination, and SUMOylation. This review summarizes the effects of PTMs, as well as their signaling pathways, on TR2 receptor protein stability, recruitment of coregulators, and subcellular partition, and discusses the potential of developing therapeutics targeting at the regulatory components of stem/precursor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA