Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(9): 178, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954031

RESUMO

Intracranial tumors present a significant therapeutic challenge due to their physiological location. Immunotherapy presents an attractive method for targeting these intracranial tumors due to relatively low toxicity and tumor specificity. Here we show that SCIB1, a TRP-2 and gp100 directed ImmunoBody® DNA vaccine, generates a strong TRP-2 specific immune response, as demonstrated by the high number of TRP2-specific IFNγ spots produced and the detection of a significant number of pentamer positive T cells in the spleen of vaccinated mice. Furthermore, vaccine-induced T cells were able to recognize and kill B16HHDII/DR1 cells after a short in vitro culture. Having found that glioblastoma multiforme (GBM) expresses significant levels of PD-L1 and IDO1, with PD-L1 correlating with poorer survival in patients with the mesenchymal subtype of GBM, we decided to combine SCIB1 ImmunoBody® with PD-1 immune checkpoint blockade to treat mice harboring intracranial tumors expressing TRP-2 and gp100. Time-to-death was significantly prolonged, and this correlated with increased CD4+ and CD8+ T cell infiltration in the tissue microenvironment (TME). However, in addition to PD-L1 and IDO, the GBM TME was found to contain a significant number of immunoregulatory T (Treg) cell-associated transcripts, and the presence of such cells is likely to significantly affect clinical outcome unless also tackled.


Assuntos
Neoplasias Encefálicas , Vacinas Anticâncer , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Vacinas de DNA , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Oxirredutases Intramoleculares , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Masculino , Criança , Pessoa de Meia-Idade
2.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338663

RESUMO

A detailed comprehension of MHC-epitope recognition is essential for the design and development of new antigens that could be effectively used in immunotherapy. Yet, the high variability of the peptide together with the large abundance of MHC variants binding makes the process highly specific and large-scale characterizations extremely challenging by standard experimental techniques. Taking advantage of the striking predictive accuracy of AlphaFold, we report a structural and dynamic-based strategy to gain insights into the molecular basis that drives the recognition and interaction of MHC class I in the immune response triggered by pathogens and/or tumor-derived peptides. Here, we investigated at the atomic level the recognition of E7 and TRP-2 epitopes to their known receptors, thus offering a structural explanation for the different binding preferences of the studied receptors for specific residues in certain positions of the antigen sequences. Moreover, our analysis provides clues on the determinants that dictate the affinity of the same epitope with different receptors. Collectively, the data here presented indicate the reliability of the approach that can be straightforwardly extended to a large number of related systems.


Assuntos
Peptídeos , Epitopos , Reprodutibilidade dos Testes , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA