Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39297465

RESUMO

The prevalence of neurodegenerative diseases has increased with longer life expectancies, necessitating the exploration of novel neuroprotective agents. Tangeretin, a polymethoxylated flavone derived from citrus fruits, has gathered attention for its potential therapeutic effects. This review highlights the neuroprotective properties of tangeretin via its antioxidant and anti-inflammatory mechanisms. Tangeretin demonstrates efficacy in mitigating oxidative stress, neuroinflammation, and neuronal damage across various neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, cerebral ischemia, and epilepsy. It shows promise in ameliorating cognitive deficits and memory impairments associated with these diseases. Moreover, tangeretin modulates multiple signalling pathways and protects against neuronal apoptosis, underscoring its potential as a therapeutic agent.

2.
J Cell Mol Med ; 28(14): e18565, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044287

RESUMO

Cisplatin (CIS) is a platinum-derived chemotherapeutic agent commonly utilized in the treatment of various malignant tumours. However, anticancer doses of the drug cause serious damage to the brain. This study aimed to determine the potential protective effects of tangeretin, which has antioxidant and anti-inflammatory properties, in cisplatin-induced neurotoxicity on BALB/c mice brains. Male BALB/c mice were randomized and separated into four groups. Tangeretin was given for 10 days by gavage. CIS was injected as a single dose of 10 mg/kg intraperitoneally (ip) on the 10th day. Brain tissues, malondialdehyde (MDA), total glutathione (tGSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and nitric oxide (NO) levels were measured to determine oxidative damage and myeloperoxidase, tumour necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), IL-6 and IL-10 were measured to determine inflammatory activity. In addition, 8-OHdG and caspase-3 were analysed by immunofluorescence methods. While CIS administration remarkably elevated reactive oxygen species, MDA, and NO levels in brain tissue compared to the control, tGSH, GPx, SOD and CAT levels were significantly decreased. Also, it has been detected that TNF-α, IL-1ß and IL-6 obtained in CIS-treated groups increased as well as IL-10 decreased, thereby elevating the inflammatory response. In addition, 8-OHdG and caspase-3 immunoreactivity in neurons increased with CIS administration. Treatment with tangeretin ameliorated the deterioration in oxidant/antioxidant status, overpowered neuroinflammation and ameliorated neurotoxicity-induced apoptosis. This study shows that tangeretin has beneficial effects on CIS-induced neurodegeneration. Possible mechanisms underlying these beneficial effects include the antioxidant and anti-inflammatory properties of tangeretin.


Assuntos
Encéfalo , Cisplatino , Flavonas , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Animais , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Flavonas/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/farmacologia , Malondialdeído/metabolismo , Glutationa Peroxidase/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo , Citocinas/metabolismo , Glutationa/metabolismo
3.
Phytother Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054118

RESUMO

Spinal cord injury (SCI) is a severe disabling disease that is characterized by inflammation and oxidative reactions. Tangeretin has been shown to possess significant antioxidant and anti-inflammatory activities. The Keap1/Nrf2 pathway, downstream of the Sesn2 gene, is involved in regulating the inflammation and oxidative response. The main objective of this study was to investigate the effect of tangeretin on SCI and its possible mechanism through cell and animal models. A T9 clamp injury was used for the mouse model and the LPS-induced stimulation of BV-2 cells was used for the cell model. The improvement of motor function after SCI was assessed by open field, swimming, and footprint experiments. The morphological characteristics of mouse spinal cord tissue and the levels of INOS, Sesn2, TNF-α, Keap1, Nrf2, IL-10, and reactive oxygen species (ROS) in vivo and in vitro were measured by several methods including western blotting, qPCR, immunofluorescence, HE, and Nissl staining. In vivo data showed that tangeretin can improve motor function recovery and reduce neuron loss and injury size in mice with SCI. Simultaneously, the in vitro findings suggested that treatment of BV-2 cells with tangeretin after LPS stimulation reduced the production of inflammatory factors and ROS, and could convert BV-2 cells from the M1 to the M2 type. Furthermore, Sesn2 knockout suppressed Keap1/Nrf2, inflammatory factors, ROS levels, and the M1 to M2 transition. Tangeretin can alleviate the inflammation and oxidative response induced by SCI by activating the Sesn2/Keap1/Nrf2 pathway.

4.
J Agric Food Chem ; 72(30): 16687-16699, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38990695

RESUMO

Slow oxidative myofibers play an important role in improving muscle endurance performance and maintaining body energy homeostasis. However, the targets and means to regulate slow oxidative myofibers proportion remain unknown. Here, we show that tangeretin (TG), a natural polymethoxylated flavone, significantly activates slow oxidative myofibers-related gene expression and increases type I myofibers proportion, resulting in improved endurance performance and aerobic metabolism in mice. Proteomics, molecular dynamics, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) investigations revealed that TG can directly bind to adiponectin receptor 1 (AdipoR1). Using AdipoR1-knockdown C2C12 cells and muscle-specific AdipoR1-knockout mice, we found that the positive effect of TG on regulating slow oxidative myofiber related markers expression is mediated by AdipoR1 and its downstream AMPK/PGC-1α pathway. Together, our data uncover TG as a natural compound that regulates the identity of slow oxidative myofibers via targeting the AdipoR1 signaling pathway. These findings further unveil the new function of TG in increasing the proportion of slow oxidative myofibers and enhancing skeletal muscle performance.


Assuntos
Flavonas , Camundongos Knockout , Músculo Esquelético , Receptores de Adiponectina , Animais , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Camundongos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Flavonas/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais/efeitos dos fármacos , Resistência Física/efeitos dos fármacos
5.
Life (Basel) ; 14(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38672774

RESUMO

Neuroinflammation is the major cause of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Currently available drugs present relatively low efficacy and are not capable of modifying the course of the disease or delaying its progression. Identifying well-tolerated and brain-penetrant agents of plant origin could fulfil the pressing need for novel treatment techniques for neuroinflammation. Attention has been drawn to a large family of flavonoids in citrus fruits, which may function as strong nutraceuticals in slowing down the development and progression of neuroinflammation. This review is aimed at elucidating and summarizing the effects of the flavonoid tangeretin (TAN) in the management of neuroinflammation-mediated neurodegenerative disorders. A literature survey was performed using various resources, including ScienceDirect, PubMed, Google Scholar, Springer, and Web of Science. The data revealed that TAN exhibited immense neuroprotective effects in addition to its anti-oxidant, anti-diabetic, and peroxisome proliferator-activated receptor-γ agonistic effects. The effects of TAN are mainly mediated through the inhibition of oxidative and inflammatory pathways via regulating multiple signaling pathways, including c-Jun N-terminal kinase, phosphoinositide 3-kinase, mitogen-activated protein kinase, nuclear factor erythroid-2-related factor 2, extracellular-signal-regulated kinase, and CRE-dependent transcription. In conclusion, the citrus flavonoid TAN has the potential to prevent neuronal death mediated by neuroinflammatory pathways and can be developed as an auxiliary therapeutic agent in the management of neurodegenerative disorders.

6.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542959

RESUMO

Previous studies have revealed the microbial metabolism of dietary choline in the gut, leading to its conversion into trimethylamine (TMA). Polymethoxyflavones (PMFs), exemplified by tangeretin, have shown efficacy in mitigating choline-induced cardiovascular inflammation. However, the specific mechanism by which these compounds exert their effects, particularly in modulating the gut microbiota, remains uncertain. This investigation focused on tangeretin, a representative PMFs, to explore its influence on the gut microbiota and the choline-TMA conversion process. Experimental results showed that tangeretin treatment significantly attenuated the population of CutC-active bacteria, particularly Clostridiaceae and Lactobacillus, induced by choline chloride in rat models. This inhibition led to a decreased efficiency in choline conversion to TMA, thereby ameliorating cardiovascular inflammation resulting from prolonged choline consumption. In conclusion, tangeretin's preventive effect against cardiovascular inflammation is intricately linked to its targeted modulation of TMA-producing bacterial activity.


Assuntos
Arterite , Flavonas , Microbioma Gastrointestinal , Ratos , Animais , Colina/metabolismo , Metilaminas/farmacologia , Metilaminas/metabolismo , Bactérias/metabolismo , Inflamação/tratamento farmacológico
7.
Inflammation ; 47(1): 145-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37725272

RESUMO

Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human's life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.


Assuntos
Isquemia Encefálica , Flavonas , Melanoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Piroptose , Inflamassomos/farmacologia , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Proteínas de Ligação a DNA/farmacologia
8.
3 Biotech ; 14(1): 9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074289

RESUMO

Global cerebral ischemia is commonly associated with neurological deficits, including cognitive and memory impairments. The present study aims to investigate the neuroprotective, cognitive, and memory enhancement effects of Tangeretin, a flavonoid against global cerebral ischemia in rats. Bilateral common carotid artery occlusion (BCCAO) and reperfusion injury method was used to induce global cerebral ischemia in rats. Motor, cognitive, and memory functions were evaluated using rotarod, grip strength, Y-maze, and Morris water maze. Further, acetylcholine esterase (AchE) enzyme activity, acetylcholine (Ach), oxidative stress markers (ROS, SOD, MDA, and CAT), inflammation (IL-6 and TNF-α), and apoptotic markers (cytochrome C, caspase 9, and caspase 3) in BCCAO rats were measured following Tangeretin (5,10, and 20 mg/kg, oral) treatment. Our findings show that Tangeretin treatment significantly improved cognition and memory by enhancing Ach levels through the amelioration of AchE enzyme activity in BCCAO rats. Moreover, Tangeretin exhibited neuroprotective effects through the mitigation of oxidative stress, inflammation, and apoptosis in the BCCAO rats. In summary, the current findings suggested that Tangeretin exhibited neuroprotection, cognitive and memory enhancement against global cerebral ischemia.

9.
Food Chem X ; 20: 100890, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144759

RESUMO

Citrus aurantium L. fruit is a commonly used Chinese medicine whose therapeutic effects tends to be affected by growing conditions. In order to gain insights into the effects of growing location on the cuticular wax composition of C. aurantium L. fruit, we analyzed the differences in the wax composition of its fruits collected from different regions. The findings showed that the cuticular waxes in the fruit peels were mainly composed of fatty acids, which differed quantitatively in the chemical profiles of C. aurantium L. samples from different geographical conditions. Particularly, the concentrations of linoleic acid and stearic acid in the total component content of the fruit peel were above 1%, with a greater level in the geo-authentic samples. Thus, GC-MS-based wax analysis was first used for the chemical characterization and quantification of cuticular waxes, which could be considered as a rapid way for evaluating the quality of medicinal fruits.

10.
Mol Biol Rep ; 51(1): 43, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158492

RESUMO

BACKGROUND: Pancreatic beta cell health and its insulin-secreting potential are severely compromised under the diabetic condition. One of the key mediators of beta cell dysfunction is endoplasmic reticulum (ER) stress. Pharmacological intervention of ER stress and associated complications in pancreatic beta cells may be an effective strategy for the management of diabetes. In the present study, we evaluated the efficacy of tangeretin, a citrus pentamethoxyflavone, in the alleviation of ER stress and associated perturbations in pancreatic Beta-TC-6 cell lines. METHODS AND RESULTS: Tunicamycin (pharmacological ER stress inducer) at subtoxic levels was observed to induce beta cell dysfunction by upregulation of intracellular ROS levels, lowering mitochondrial number/biogenesis and membrane potential, elevation of UPR markers, XBP-1, GADD153, and ER resident chaperones. Treatment with tangeretin was successful in improving the beta cell function by lowering the ROS levels and improving the mitochondrial biogenesis and mitochondrial membrane potential. Tangeretin also downregulated the expression levels of XBP-1, GADD153, and ER resident chaperones. GLUT2 expression, however, did not undergo any significant change under ER stress. We also observed altered expression of Pdx-1, TRB3, and p-Akt under the ER stress condition. Tangeretin augmented the expression levels of Pdx-1, and p-Akt while curtailing the expression of TRB3 in beta cells. Tunicamycin treatment suppressed the insulin levels, however, co-treatment with tangeretin could only marginally improve the levels. CONCLUSION: Targeting ER stress and associated pathways in pancreatic Beta-TC-6 cell lines by tangeretin can be an effective strategy for improving beta cell function.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Tunicamicina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Estresse do Retículo Endoplasmático , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Chaperonas Moleculares/metabolismo , Apoptose
11.
Cureus ; 15(10): e47452, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38022093

RESUMO

Introduction Citrus fruit peels contain Tangeretin, a natural chemical flavonoid that reinforces plant cell walls and serves as a defense mechanism. Apoptosis, growth inhibition, anti-oxidant, anti-diabetic, and anti-cancer activities are only a few of its many qualities. Tangeretin's principal function is to shield healthy cells or tissues from the harmful effects of chemotherapy. The purpose of this study was to investigate the apoptotic activity of Tangeretin's impact on KB (oral cancer cells) cell lines. Materials and method This study employed Tangeritin, in investigating its effects on oral cancer cells. Oral cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM), with 10% fetal bovine serum at 37°C in a 5% CO2 environment. Cell viability was assessed by seeding oral cancer cells in 96-well plates, exposing them to varying Tangeritin concentrations (50 µM, 100 µM, and 200 µM) with growth inhibition of KB cell viability in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and morphological changes in cells were observed under an inverted light microscope at 10x magnification. The results were reported as mean ± standard error mean (SEM) using one-way analysis of variance through IBM SPSS Statistics for Windows, Version 23 (Released 2015; IBM Corp., Armonk, New York, United States). Result MTT assay showed a significant reduction in KB cell viability when treated with Tangeretin. With a significant decrease in mRNA levels of the anti-apoptotic genes Bcl-2 and Bcl-xL. At 50 µM, 100 µM, and 200 µM, the levels of Bcl-2 were 0.85 ± 0.09, 0.62 ± 0.05, and 0.67 ± 0.05, respectively. Similarly, the mRNA expression of Bcl-xL was 0.82 ± 0.07 for 50 µM, 0.7 ± 0.06 for 100 µM, and 0.77 ± 0.06for 200 µM. The mRNA expression levels of Bax were 1.1 ± 0.09 for 50 µM, 1.4 ± 0.12for 100 µM, and 1.3 ± 0.11 for 200 µM, respectively. Conclusion Tangeretin showed a promising apoptotic activity in KB cells suggesting its utility as an anti-cancer compound. It prevented the growth and proliferation of cancer cells by acting on pro-apoptotic and anti-apoptotic genes. However, this conclusion is mostly based on the in vitro study. Therefore in vivo animal studies were needed to confirm the findings.

12.
Front Pharmacol ; 14: 1247800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781713

RESUMO

Background: Pulmonary fibrosis (PF) is a terminal pathological change in a variety of lung diseases characterized by excessive deposition of extracellular matrix, for which effective treatment is lacking. Tangeretin (Tan), a flavonoid derived from citrus, has been shown to have a wide range of pharmacological effects. This study aimed to investigate the role and potential mechanisms of Tan on pulmonary fibrosis. Methods: A model of pulmonary fibrosis was established by administering bleomycin through tracheal drip, followed by administering Tan or pirfenidone through gavage. HE and Masson staining were employed to assess the extent of pulmonary fibrosis. Subsequently, Western blot, enzyme-linked immunosorbent assay (ELISA), RNA sequencing, and immunohistochemistry techniques were employed to uncover the protective mechanism of Tan in PF mice. Furthermore, A549 cells were stimulated with TGF-ß1 to induce epithelial-mesenchymal transition (EMT) and demonstrate the effectiveness of Tan in mitigating PF. Results: Tan significantly ameliorated bleomycin-induced pulmonary fibrosis, improved fibrotic pathological changes, and collagen deposition in the lungs, and reduced lung inflammation and oxidative stress. The KEGG pathway enrichment analysis revealed a higher number of enriched genes in the PI3K/Akt pathway. Additionally, Tan can inhibit the EMT process related to pulmonary fibrosis. Conclusion: Taken together, the above research results indicate that Tan suppresses inflammation, oxidative stress, and EMT in BLM-induced pulmonary fibrosis via the PI3K/Akt pathway and is a potential agent for the treatment of pulmonary fibrosis.

13.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765037

RESUMO

Natural compounds with pharmacological activity, flavonoids have been the subject of an exponential increase in studies in the field of scientific research focused on therapeutic purposes due to their bioactive properties, such as antioxidant, anti-inflammatory, anti-aging, antibacterial, antiviral, neuroprotective, radioprotective, and antitumor activities. The biological potential of flavonoids, added to their bioavailability, cost-effectiveness, and minimal side effects, direct them as promising cytotoxic anticancer compounds in the optimization of therapies and the search for new drugs in the treatment of cancer, since some extensively antineoplastic therapeutic approaches have become less effective due to tumor resistance to drugs commonly used in chemotherapy. In this review, we emphasize the antitumor properties of tangeretin, a flavonoid found in citrus fruits that has shown activity against some hallmarks of cancer in several types of cancerous cell lines, such as antiproliferative, apoptotic, anti-inflammatory, anti-metastatic, anti-angiogenic, antioxidant, regulatory expression of tumor-suppressor genes, and epigenetic modulation.

14.
J Agric Food Chem ; 71(36): 13474-13482, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639537

RESUMO

Benzo[a]pyrene (BaP) is a common food contaminant that can impair organismal aging. Tangeretin (TAN) may mitigate aging toxicities as a dietary supplement. This study used Caenorhabditis elegans to investigate the effects of chronic exposure to BaP on aging and to determine whether TAN supplementation could alleviate BaP-induced toxicity. Early life exposure to BaP (10 µM) significantly inhibited growth by 5%, and exposure to 0.1 to 10 µM BaP impaired C. elegans motility, resulting in a 3.4-6.5% reduction in motility. Chronic exposure to BaP (10 µM) age-dependently aggravated aberrant protein aggregation (7% increase) and shortened the median lifespan of the worms from 20 to 16 days. In addition, BaP worsened the age-dependent decline in motility and pharyngeal pumping, as well as the accumulation of reactive oxygen species. Furthermore, exposure to BaP resulted in significantly higher relative transcript levels of approximately 1.8-2.0-fold for the hsp-16.1, hsp-16.2, hsp-16.49, and hsp-70 genes. Stressed worms exposed to BaP exhibited significantly lower survival under heat stress. Dietary TAN supplementation alleviated the BaP-induced decline in motility, pumping, and poly-Q accumulation and restored heat shock proteins' transcript levels. Our findings suggest that chronic BaP exposure adversely affects aging and that TAN exposure mitigates the BaP-induced aging toxicity.


Assuntos
Benzo(a)pireno , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Benzo(a)pireno/toxicidade , Proteostase , Envelhecimento , Resposta ao Choque Térmico , Suplementos Nutricionais
15.
Chem Biol Interact ; 382: 110650, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517432

RESUMO

Polymethoxyflavones (PMFs) in citrus fruits have a variety of biological activities, including antioxidant, anti-inflammatory, anticancer, and anti-atherosclerotic effects. The liver is the major detoxifying organ of the human body; however, factors such as acetaminophen (APAP) overdose may increase oxidative stress in liver cells and lead to severe liver failure. In this study we examined the effects of tangeretin (TAN), a common citrus PMF, and its metabolite 4'-demethyltangeretin (4'-OH-TAN) on activation of the Nrf2 antioxidant system in mouse AML-12 hepatocytes through regulation by epigenetic mechanisms. The ability of TAN and 4'-OH-TAN to inhibit APAP-induced hepatotoxicity was also evaluated. The results showed that TAN and 4'-OH-TAN significantly increased the mRNA and protein levels of Nrf2 and Nrf2-mediated antioxidant and detoxifying enzymes (UGT1A, HO-1, and NQO1) in AML-12 cells. TAN and 4'-OH-TAN also suppressed protein expression of histone deacetylases (HDACs) and DNA methyltransferases (DMNTs) and reduced DNA methylation of the nrf2 promoter. Furthermore, TAN and 4'-OH-TAN prevented APAP-induced injury and inhibited APAP-induced ROS generation in AML-12 cells. Based on these results, we conclude that TAN and 4'-OH-TAN may increase the antioxidant capacity of liver cells by regulating epigenetic alteration to activate the Nrf2-related antioxidant system, thereby preventing liver cells from being damaged by APAP-induced oxidative stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Animais , Camundongos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Acetaminofen/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Hepatócitos , Epigênese Genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL
16.
Transl Oncol ; 35: 101712, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354638

RESUMO

BACKGROUND: The roles of Connexin43 (Cx43) in clear cell renal cell carcinoma (ccRCC) microenviroment remains to be poorly defined. METHODS: The expression profile, prognosis and immune analysis of Cx43 in various cancers, particularly in ccRCC were performed using TCGA database, and various biological function assays were applied to explore the physiological role of Cx43 and tangeretin in ccRCC. Western blot were applied to examine the protein expression and Kunming mice were used to evaluate preliminary safety or anti-tumor activity of tangeretin and sunitinib. RESULTS: Compared with the normal group, higher expression levels of Cx43 in ccRCC, and distinct associations between Cx43 expression and ccRCC prognosis or immune infiltration, were found. Notably, the expression of Cx43 was found to be highly correlated with that of receptor tyrosine kinases (RTKs), particularly with VEGFR1, VEGFR2 and VEGFR3. The expression of Cx43 and EGFR was also found to be higher in ccRCC than that in the para-cancerous specimens. Knocking down Cx43 expression decreased RCC cell viability, cell migration, p-EGFR, MMP-9 and survivin expression. Using 14 Chinese medicine monomers, tangeretin was screened and found to inhibit tumor cell viability and Cx43 expression. Tangeretin also enhanced the sensitivity of RCC cells to tyrosine kinase inhibitors (TKIs) sunitinib and sorafenib. However, the same concentration of tangeretin exerted a less prominent effect on normal renal cell viability. CONCLUSIONS: Cx43 is strongly associated with RTK expression and ccRCC progression, while tangeretin can inhibit RCC cell malignancy by inhibiting Cx43 expression and enhance the sensitivity of RCC cells to TKIs.

17.
Life Sci ; 325: 121749, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142089

RESUMO

Lung carcinoma is one of the most prevalent and deadly neoplasia worldwide. Numerous synthetic medications have been used in the treatment of cancer. However, there are several drawbacks, such as side effects and inefficiency. The current study focused on the potential anti-cancer effectiveness of tangeretin, an antioxidant flavonoid, on lung cancer induced experimentally in BALB/c mice and explored the involvement of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling in its anti-cancer effect. BALB/c mice were injected with urethane (1.5 mg/kg) twice; on the first day and on the 60th day of the experiment, then treated with 200 mg/kg tangeretin orally once daily for the last 4 weeks of the experiment. Compared with urethane group, tangeretin normalized oxidative stress markers; MDA, GSH, and SOD activity. Moreover, it had an anti-inflammatory effect by decreasing lung MPO activity, ICAM-1, IL-6, NF-қB, and TNF-α expressions. Interestingly, tangeretin decreased cancer metastasis by reducing p-JAK, JAK, p-STAT-3, and STAT-3 protein expression levels. Furthermore, it increased the apoptotic marker, caspase-3, indicating enhanced apoptosis of cancer cells. Finally, histopathology confirmed the anti-cancer effect of tangeretin. In conclusion, tangeretin could have a promising effect in counteracting lung cancer via modulation of NF-κB/ICAM-1, JAK/STAT-3, and caspase-3 signaling.


Assuntos
Neoplasias Pulmonares , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Caspase 3 , Uretana , Molécula 1 de Adesão Intercelular , Camundongos Endogâmicos BALB C , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Apoptose
18.
Inflammopharmacology ; 31(3): 1465-1480, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884189

RESUMO

Potassium dichromate (PD) is an environmental xenobiotic commonly recognized as teratogenic, carcinogenic, and mutagenic in animals and humans. The present study was conducted to investigate the role of tangeretin (TNG) as a neuro-protective drug against PD-induced brain injury in rats. Thirty-two male adult Wistar rats were blindly divided into four groups (8 rats/group). The first group received saline intranasally (i.n.). The second group received a single dose of PD (2 mg/kg, i.n.). The third group received TNG (50 mg/kg; orally), for 14 days followed by i.n. of PD on the last day of the experiment. The fourth group received TNG (100 mg/kg; orally) for 14 days followed by i.n. of PD on the last day of the experiment. Behavioral indices were evaluated 18 h after PD administration. Neuro-biochemical indices and histopathological studies were evaluated 24 h after PD administration. Results of the present study revealed that rats intoxicated with PD induced- oxidative stress and inflammation via an increase in malondialdehyde (MDA) and a decrease in nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and glutathione(GSH) levels with an increase in brain contents of tumor necrosis factor-alpha (TNF-α) and interleukin (IL-6). Pre-treatment with TNG (100 mg/kg; orally) ameliorated behavior, cholinergic activities, and oxidative stress and decreased the elevated levels of pro-inflammatory mediators; TNF-α and IL-6 with a decrease in brain content of chromium residues detected by Plasma-Optical Emission Spectrometer. Also, the histopathological picture of the brain was improved significantly in rats that received TNG (100 mg/kg). Additionally, TNG decreased caspase-3 expression in the brain of PD rats. In conclusion, TNG possesses a significant neuroprotective role against PD-induced acute brain injury via modulating the Nrf2 signaling pathway and quenching the release of inflammatory mediators and apoptosis in rats.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Humanos , Ratos , Masculino , Animais , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Mediadores da Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cromo/farmacologia , Interleucina-6/metabolismo , Transdução de Sinais , Estresse Oxidativo , Glutationa/metabolismo , Apoptose
19.
Curr Res Food Sci ; 6: 100459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846469

RESUMO

Numerous studies have reported that tangeretin is a polymethoxylated flavone with a variety of biological activates, but little research has been done on the antioxidant mechanism of tangeretin. Hence, we investigated the effect of tangeretin on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and its potential molecular mechanisms by in vitro and in silico research. The results of molecular docking suggested that tangeretin bound at the top of the central pore of Kelch-like ECH-associated protein 1 (Keap1) Kelch domain, and the hydrophobic and hydrogen bond interactions contributed to their stable binding. Herein, the regulation of Nrf2-ARE pathway by tangeretin was explored in the human embryonic kidney cell line HEK293T, which is relatively easy to be transfected. Upon binding to tangeretin, Nrf2 translocated to the nucleus of HEK293T cells, which in turn activated the Nrf2-ARE pathway. Luciferase reporter gene analysis showed that tangeretin significantly induced ARE-mediated transcriptional activation. Real-time PCR and Western blot assays showed that tangeretin induced the gene and protein expressions of Nrf2-mediated targets, including heme oxygenase 1 (HO-1), nicotinamide adenine dinucleotide phosphate (NADPH) quinone dehydrogenase 1 (NQO1), and glutamate-cysteine ligase (GCLM). In addition, tangeretin could effectively scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. In summary, tangeretin may be a potential antioxidant via activating the Nrf2-ARE pathway.

20.
Cell Stress Chaperones ; 28(2): 151-165, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653727

RESUMO

Endoplasmic reticulum (ER) stress and associated oxidative stress are involved in the genesis and progression of skeletal muscle diseases such as myositis and atrophy or muscle wasting. Targeting the ER stress and associated downstream pathways can aid in the development of better treatment strategies for these diseases with limited therapeutic approaches. There is a growing interest in identifying natural products against ER stress due to the lower toxicity and cost effectiveness. In the present study, we investigated the protective effect of Tangeretin, a citrus methoxyflavone found in citrus peels against Tunicamycin (pharmacological ER stress inducer)-induced ER stress and associated complications in rat skeletal muscle L6 cell lines. Treatment with Tunicamycin for a period of 24 h resulted in the upregulation of ER stress marker proteins, ER resident oxidoreductases and cellular reactive oxygen species (ROS). Co-treatment with Tangeretin was effective in alleviating Tunicamycin-induced ER stress and associated redox-related complications by significantly downregulating the unfolded protein response (UPR), ER resident oxidoreductase proteins, cellular ROS and improving the antioxidant enzyme activity. Tunicamycin also induced upregulation of phosphorylated p38 MAP Kinase and loss of mitochondrial membrane potential. Tangeretin significantly reduced the levels of phosphorylated p38 MAP Kinase and improved the mitochondrial membrane potential. From the results, it is evident that Tangeretin can be explored further as a potential candidate for skeletal muscle diseases involving protein misfolding and ER stress.


Assuntos
Flavonas , Mioblastos Esqueléticos , Animais , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular , Flavonas/farmacologia , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Membranas Mitocondriais/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mioblastos Esqueléticos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA