Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602250

RESUMO

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Assuntos
Beta vulgaris , Glucose , Proteínas de Plantas , Raízes de Plantas , Sacarose , Animais , Beta vulgaris/citologia , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Prótons , Sacarose/metabolismo , Xenopus laevis
2.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443797

RESUMO

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Assuntos
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilação da Expressão Gênica
3.
Plant Cell Rep ; 43(4): 104, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507094

RESUMO

KEY MESSAGE: The present study reports differentially expressed transcripts in the waterlogging-induced adventitious root (AR) of Mentha arvensis; the identified transcripts will help to understand AR development and improve waterlogging stress response. Waterlogging notably hampers plant growth in areas facing waterlogged soil conditions. In our previous findings, Mentha arvensis was shown to adapt better in waterlogging conditions by initiating the early onset of adventitious root development. In the present study, we compared the transcriptome analysis of adventitious root induced after the waterlogging treatment with the control taproot. The biochemical parameters of total carbohydrate, total protein content, nitric oxide (NO) scavenging activity and antioxidant enzymes, such as catalase activity (CAT) and superoxide dismutase (SOD) activity, were enhanced in the adventitious root compared with control taproot. Analysis of differentially expressed genes (DEGs) in adventitious root compared with the control taproot were grouped into four functional categories, i.e., carbohydrate metabolism, antioxidant activity, hormonal regulation, and transcription factors that could be majorly involved in the development of adventitious roots. Differential expression of the upregulated and uniquely expressing thirty-five transcripts in adventitious roots was validated using qRT-PCR. This study has generated the resource of differentially and uniquely expressing transcripts in the waterlogging-induced adventitious roots. Further functional characterization of these transcripts will be helpful to understand the development of adventitious roots, leading to the resistance towards waterlogging stress in Mentha arvensis.


Assuntos
Mentha , Mentha/genética , Mentha/metabolismo , Perfilação da Expressão Gênica , Raízes de Plantas/metabolismo
4.
Plant J ; 117(4): 1069-1083, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37947285

RESUMO

The color of purple carrot taproots mainly depends on the anthocyanins sequestered in the vacuoles. Glutathione S-transferases (GSTs) are key enzymes involved in anthocyanin transport. However, the precise mechanism of anthocyanin transport from the cytosolic surface of the endoplasmic reticulum (ER) to the vacuoles in carrots remains unclear. In this study, we conducted a comprehensive analysis of the carrot genome, leading to the identification of a total of 41 DcGST genes. Among these, DcGST1 emerged as a prominent candidate, displaying a strong positive correlation with anthocyanin pigmentation in carrot taproots. It was highly expressed in the purple taproot tissues of purple carrot cultivars, while it was virtually inactive in the non-purple taproot tissues of purple and non-purple carrot cultivars. DcGST1, a homolog of Arabidopsis thaliana TRANSPARENT TESTA 19 (TT19), belongs to the GSTF clade and plays a crucial role in anthocyanin transport. Using the CRISPR/Cas9 system, we successfully knocked out DcGST1 in the solid purple carrot cultivar 'Deep Purple' ('DPP'), resulting in carrots with orange taproots. Additionally, DcMYB7, an anthocyanin activator, binds to the DcGST1 promoter, activating its expression. Compared with the expression DcMYB7 alone, co-expression of DcGST1 and DcMYB7 significantly increased anthocyanin accumulation in carrot calli. However, overexpression of DcGST1 in the two purple carrot cultivars did not change the anthocyanin accumulation pattern or significantly increase the anthocyanin content. These findings improve our understanding of anthocyanin transport mechanisms in plants, providing a molecular foundation for improving and enhancing carrot germplasm.


Assuntos
Antocianinas , Daucus carota , Antocianinas/metabolismo , Daucus carota/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pigmentação/genética
5.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894740

RESUMO

Taproot cracking, a severe and common physiological disorder, markedly reduces radish yield and commercial value. Calcium-dependent protein kinase (CDPK) plays a pivotal role in various plant developmental processes; however, its function in radish taproot cracking remains largely unknown. Here, 37 RsCDPK gene members were identified from the long-read radish genome "QZ-16". Phylogenetic analysis revealed that the CDPK members in radish, tomato, and Arabidopsis were clustered into four groups. Additionally, synteny analysis identified 13 segmental duplication events in the RsCDPK genes. Analysis of paraffin-embedded sections showed that the density and arrangement of fleshy taproot cortex cells are important factors that affect radish cracking. Transcriptome sequencing of the fleshy taproot cortex revealed 5755 differentially expressed genes (DEGs) (3252 upregulated and 2503 downregulated) between non-cracking radish "HongYun" and cracking radish "505". These DEGs were significantly enriched in plant hormone signal transduction, phenylpropanoid biosynthesis, and plant-pathogen interaction KEGG pathways. Furthermore, when comparing the 37 RsCDPK gene family members and RNA-seq DEGs, we identified six RsCDPK genes related to taproot cracking in radish. Soybean hairy root transformation experiments showed that RsCDPK21 significantly and positively regulates root length development. These findings provide valuable insights into the relationship between radish taproot cracking and RsCDPK gene function.


Assuntos
Arabidopsis , Raphanus , Raphanus/metabolismo , Filogenia , Genes de Plantas , Sintenia/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Sci ; 334: 111768, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343602

RESUMO

Radish (Raphanus sativus L.) is an economically important and widely cultivated root vegetable crop. The coloration of the green skin and green flesh is an important trait influencing the nutrition and flavor quality in fruit radish. GOLDEN2-LIKEs (GLKs) play critically important roles in plastid development and chlorophyll biosynthesis in plants. However, the molecular mechanism underlying chlorophyll biosynthesis still remain elusive in green fruit radish taproot. Herein, the RsGLK2.1 gene exhibited higher expression level in taproot with a green skin (GS) and green flesh (GF) than that in taproot of the white or red radish genotypes. RsGLK2.1 is a nuclear transcription factor that has intrinsic transcriptional activation activity. Overexpression of RsGLK2.1 increased the total chlorophyll content of 20.68%-45.84% in radish leaves. Knockout of the RsGLK2.1 gene via CRISPR/Cas9 technology resulted in a significant decrease in the chlorophyll content. Overexpression of the RsGLK2.1 gene could restore the phenotype of the glk1glk2 mutant Arabidopsis. RsGLK2.1 was participated in regulating the chlorophyll biosynthesis by directly binding to the promoter of RsHEMA2 and activating its transcription. The interaction of RsNF-YA9a with RsGLK2.1 increased the transcriptional activity of the downstream gene RsHEMA2 under the light condition rather than the dark condition, indicating that both of them regulate the chlorophyll biosynthesis in a light-dependent manner of radish. Overall, these results provided insights into the molecular framework of the RsGLK2.1-RsNF-YA9a module, and could facilitate dissecting the regulatory mechanism underlying chlorophyll biosynthesis in green taproot of radish, and genetic improvement of quality traits in fruit radish breeding programs.


Assuntos
Proteínas de Plantas , Raphanus , Raphanus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
7.
Front Microbiol ; 14: 1164035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152751

RESUMO

'Candidatus Phytoplasma solani' (stolbur phytoplasma) is associated with rubbery taproot disease (RTD) of sugar beet (Beta vulgaris L.), while Macrophomina phaseolina is considered the most important root rot pathogen of this plant in Serbia. The high prevalence of M. phaseolina root rot reported on sugar beet in Serbia, unmatched elsewhere in the world, coupled with the notorious tendency of RTD-affected sugar beet to rot, has prompted research into the relationship between the two diseases. This study investigates the correlation between the occurrence of sugar beet RTD and the presence of root rot fungal pathogens in a semi-field 'Ca. P. solani' transmission experiment with the cixiid vector Reptalus quinquecostatus (Dufour), in addition to naturally infected sugar beet in the open field. Our results showed that: (i) Reptalus quinquecostatus transmitted 'Ca. P. solani' to sugar beet which induced typical RTD root symptoms; (ii) Macrophomina phaseolina root rot was exclusively present in 'Ca. P. solani'-infected sugar beet in both the semi-field experiment and naturally infected sugar beet; and that (iii) even under environmental conditions favorable to the pathogen, M. phaseolina did not infect sugar beet, unless the plants had been previously infected with phytoplasma.

8.
Plant Dis ; 107(12): 3792-3800, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37189042

RESUMO

Two phloem-limited pathogens, 'Candidatus Arsenophonus phytopathogenicus' and 'Candidatus Phytoplasma solani', threaten sugar beet production in France, Switzerland, and Germany. Previous studies of these pathogens in Germany had focused on its western and southern regions, leaving a knowledge gap about eastern Germany. Despite their importance, this study is the first to investigate phytoplasmas in sugar beet in Saxony-Anhalt, Germany. A phytoplasma strain related to 'Ca. P. solani' is found predominant in Saxony-Anhalt, unlike in France, where 'Ca. P. solani' has a minor role compared with 'Ca. A. phytopathogenicus'. The phytoplasma strain infecting sugar beet in Saxony-Anhalt was classified into a new subgroup designated as 16SrXII-P. The multilocus sequence analysis (MLSA) of nonribosomal genes of the novel phytoplasma strain showed that it is significantly different from the reference and all previously reported 'Ca. P. solani' strains including the strain from western Germany. Analyses of sugar beet samples from previous years confirmed the presence of the 16SrXII-P strain in sugar beet as early as 2020 and also in Bavaria in southern Germany. Based on 16S rDNA analysis, 'Ca. A. phytopathogenicus' in Saxony-Anhalt is identical to strains in sugar beet in other parts of Germany and France, as well as to a strain in potato from Germany. The presence and prevalence of two phytoplasmas in sugar beet in Germany suggest that more attention should be directed toward understanding phytoplasma infection in sugar beet in this country.


Assuntos
Beta vulgaris , Phytoplasma , Phytoplasma/genética , Prevalência , Doenças das Plantas , Açúcares
9.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982666

RESUMO

Ginseng is regarded as the "king of herbs" in China, with its roots and rhizomes used as medicine, and it has a high medicinal value. In order to meet the market demand, the artificial cultivation of ginseng emerged, but different growth environments significantly affect the root morphology of garden ginseng. In this study, we used ginseng cultivated in deforested land (CF-CG) and ginseng cultivated in farmland (F-CG) as experimental materials. These two phenotypes were explored at the transcriptomic and metabolomic levels so as to understand the regulatory mechanism of taproot enlargement in garden ginseng. The results show that, compared with those of F-CG, the thickness of the main roots in CF-CG was increased by 70.5%, and the fresh weight of the taproots was increased by 305.4%. Sucrose, fructose and ginsenoside were significantly accumulated in CF-CG. During the enlargement of the taproots of CF-CG, genes related to starch and sucrose metabolism were significantly up-regulated, while genes related to lignin biosynthesis were significantly down-regulated. Auxin, gibberellin and abscisic acid synergistically regulated the enlargement of the taproots of the garden ginseng. In addition, as a sugar signaling molecule, T6P might act on the auxin synthesis gene ALDH2 to promote the synthesis of auxin and, thus, participate in the growth and development of garden ginseng roots. In summary, our study is conducive to clarifying the molecular regulation mechanism of taproot enlargement in garden ginseng, and it provides new insights for the further exploration of the morphogenesis of ginseng roots.


Assuntos
Ginsenosídeos , Panax , Transcriptoma , Raízes de Plantas/genética , Metabolômica/métodos , Sacarose/metabolismo
10.
Phytopathology ; 113(5): 904-916, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36647181

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a soilborne fungal pathogen threatening U.S. cotton production. The objective of this study was to develop a reliable and efficient method to evaluate cotton for FOV4 resistance based on taproot rot during seed germination through five growth chamber tests and two greenhouse tests. Seeds from eight cotton cultivars (Set 1) were germinated in a paper towel for 6 days, and taproots were inoculated with a FOV4 conidial suspension using three inoculation methods (i.e., taproot dipping, taproot wounding, and paper towel drenching), in addition to seed soaking before germination. The taproot rot-based disease incidence (DI) and disease severity rating (DSR), seed germination percentage (SGP), and plant fresh weight (PFW) were measured 7 days after inoculation. Taproot dipping was the most efficient and reliable evaluation method. The SGP and PFW were not significantly correlated with the DI and DSR, making them inappropriate to use in resistance evaluation. Pima DP 359 RF and PHY 881 RF were the most resistant with the lowest root rot. The taproot dipping method was repeated in another test and confirmed in two tests using another set of eight cultivars (Set 2). The taproot rot-based DSR at germination was significantly correlated with the DSR at the seedling stage in the greenhouse in both sets and with previous results in seedling mortality in the greenhouse and field in Set 2. The results suggest that the response to FOV4 infections at the seed germination stage is overall congruent with that at the seedling stage.


Assuntos
Fusarium , Fusarium/fisiologia , Germinação , Sementes , Doenças das Plantas/microbiologia , Gossypium , Plântula
11.
J Exp Bot ; 74(1): 233-250, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36239471

RESUMO

CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) peptides are a class of small molecules involved in plant growth and development. Although radish (Raphanus sativus) is an important root vegetable crop worldwide, the functions of CLE peptides in its taproot formation remain elusive. Here, a total of 48 RsCLE genes were identified from the radish genome. RNA in situ hybridization showed that RsCLE22a gene was highly expressed in the vascular cambium. Overexpression of RsCLE22a inhibited root growth by impairing stem cell proliferation in Arabidopsis, and radish plants with exogenous supplementation of RsCLE22 peptide (CLE22p) showed a similar phenotype. The vascular cambial activity was increased in RsCLE22a-silenced plants. Transcriptome analysis revealed that CLE22p altered the expression of several genes involved in meristem development and hormone signal transduction in radish. Immunolocalization results showed that CLE22p increased auxin accumulation in vascular cambium. Yeast one-hybrid and dual-luciferase assays showed that the WUSCHEL-RELATED HOMEOBOX 4 (RsWOX4) binds to RsCLE22a promoter and activates its transcription. The expression level of RsWOX4 was related to vascular cambial activity and was regulated by auxin. Furthermore, a RsCLE22a-RsWOX4 module is proposed to regulate taproot vascular cambium activity through an auxin signaling-related pathway in radish. These findings provide novel insights into the regulation of root growth in a horticultural crop.


Assuntos
Arabidopsis , Raphanus , Raphanus/genética , Raphanus/metabolismo , Raízes de Plantas/genética , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Arabidopsis/genética , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
12.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555796

RESUMO

Fatty acyl reductase (FAR) is a crucial enzyme that catalyzes the NADPH-dependent reduction of fatty acyl-CoA or acyl-ACP substrates to primary fatty alcohols, which in turn acts as intermediate metabolites or metabolic end products to participate in the formation of plant extracellular lipid protective barriers (e.g., cuticular wax, sporopollenin, suberin, and taproot wax). FARs are widely present across plant evolution processes and play conserved roles during lipid synthesis. In this review, we provide a comprehensive view of FAR family enzymes, including phylogenetic analysis, conserved structural domains, substrate specificity, subcellular localization, tissue-specific expression patterns, their varied functions in lipid biosynthesis, and the regulation mechanism of FAR activity. Finally, we pose several questions to be addressed, such as the roles of FARs in tryphine, the interactions between transcription factors (TFs) and FARs in various environments, and the identification of post-transcriptional, translational, and post-translational regulators.


Assuntos
Aldeído Oxirredutases , Oxirredutases , Oxirredutases/metabolismo , Aldeído Oxirredutases/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo , Álcoois Graxos , Especificidade por Substrato
13.
Plant Physiol Biochem ; 192: 285-297, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283201

RESUMO

Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.

14.
Front Nutr ; 9: 889407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923198

RESUMO

Radish (Raphanus sativus L.) is an important Brassicaceous vegetable crop that is cultivated worldwide. The taste of radish can be described as pungent, sweet, and crisp. At present, the metabolic characteristics leading to differences in radish taste remain unclear, due to the lack of large-scale detection and identification of radish metabolites. In this study, UPLC-MS/MS-based targeted metabolome analysis was performed on the taproots of eight radish landraces. We identified a total of 938 metabolites, and each landrace exhibited a specific metabolic profile, making it unique in flavor and quality. Our results show that taste differences among the taproots of different radish landraces can be explained by changes in composition and abundance of glucosinolates, polyphenols, carbohydrates, organic acids, amino acids, vitamins, and lipids. This study reveals the potential metabolic causes of variation in the taste and flavor of radish taproots.

15.
Front Plant Sci ; 13: 882753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909753

RESUMO

Sugar beet taproot growth and development is a complex biological process involving morphogenesis and dry matter accumulation. However, the molecular regulatory mechanisms underlying taproot growth and development remain elusive. We performed a correlation analysis of the proteome and transcriptome in two cultivars (SD13829 and BS02) at the start and the highest points of the taproot growth rate. The corresponding correlation coefficients were 0.6189, 0.7714, 0.6803, and 0.7056 in four comparison groups. A total of 621 genes were regulated at both transcriptional and translational levels, including 190, 71, 140, and 220 in the BS59-VS-BS82, BS59-VS-SD59, BS82-VS-SD82, and SD59-VS-SD82 groups, respectively. Ten, 32, and 68 correlated-DEGs-DEPs (cor-DEGs-DEPs) were significantly enrdiched in the proteome and transcriptome of the BS59-VS-BS82, SD59-VS-SD82, and BS82-VS-SD82 groups, respectively, which included ribonuclease 1-like protein, DEAD-box ATP-dependent RNA helicase, TolB protein, heat shock protein 83, 20 kDa chaperonin, polygalacturonase, endochitinase, brassinolide and gibberellin receptors (BRI1 and GID1), and xyloglucan endotransglucosylase/hydrolase (XTH). In addition, Beta vulgaris XTH could enhance the growth and development of Arabidopsis primary roots by improving cell growth in the root tip elongation zone. These findings suggested that taproot growth and expansion might be regulated at transcriptional and posttranscriptional levels and also may be attributed to cell wall metabolism to improve cell wall loosening and elongation.

16.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630301

RESUMO

Invading pathogens interact with plant-associated microbial communities, which can be altered under the pressure of pathogen infection. Limited information exists on plant-microbe interactions occurring during natural outbreaks in agricultural fields. Taproot decline (TRD) of soybean is an emerging disease caused by Xylaria necrophora. TRD disease occurrence and yield loss associated with TRD are outstanding issues in soybean production. We applied nuclear ribosomal DNA Internal Transcribed Spacers and 16S rRNA gene taxonomic marker sequencing to define the composition of the fungal and bacterial communities associated with healthy and diseased soybean roots collected from the Mississippi Delta. The plant compartment was a significant factor regulating taxonomic diversity, followed by the disease status of the plant. TRD impacted the root endophytes, causing imbalances; at the intermediate and advanced stages of TRD, X. necrophora decreased mycobiome diversity, whereas it increased microbiome richness. Networks of significant co-occurrence and co-exclusion relationships revealed direct and indirect associations among taxa and identified hubs with potential roles in assembling healthy and TRD-affected soybean biomes. These studies advance the understanding of host-microbe interactions in TRD and the part of biomes in plant health and disease.

17.
BMC Genomics ; 23(1): 86, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100996

RESUMO

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (PN) belonging to the genus Panax of family Araliaceae is widely used in traditional Chinese medicine to treat various diseases. PN taproot, as the most vital organ for the accumulation of bioactive components, presents a variable morphology (oval or long), even within the same environment. However, no related studies have yet explained the molecular mechanism of phenotypic differences. To investigate the cause of differences in the taproot phenotype, de novo and comparative transcriptomic analysis on PN taproot was performed. RESULTS: A total of 133,730,886 and 114,761,595 paired-end clean reads were obtained based on high-throughput sequencing from oval and long taproot samples, respectively. 121,955 unigenes with contig N50 = 1,774 bp were generated by using the de novo assembly transcriptome, 63,133 annotations were obtained with the BLAST. And then, 42 genes belong to class III peroxidase (PRX) gene family, 8 genes belong to L-Ascorbate peroxidase (APX) gene family, and 55 genes belong to a series of mitogen-activated protein kinase (MAPK) gene family were identified based on integrated annotation results. Differentially expressed genes analysis indicated substantial up-regulation of PnAPX3 and PnPRX45, which are related to reactive oxygen species metabolism, and the PnMPK3 gene, which is related to cell proliferation and plant root development, in long taproots compared with that in oval taproots. Furthermore, the determination results of real-time quantitative PCR, enzyme activity, and H2O2 content verified transcriptomic analysis results. CONCLUSION: These results collectively demonstrate that reactive oxygen species (ROS) metabolism and the PnMPK3 gene may play vital roles in regulating the taproot phenotype of PN. This study provides further insights into the genetic mechanisms of phenotypic differences in other species of the genus Panax.


Assuntos
Panax notoginseng , Perfilação da Expressão Gênica , Peróxido de Hidrogênio , Panax notoginseng/genética , Raízes de Plantas/genética , Transcriptoma
18.
Sensors (Basel) ; 21(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883948

RESUMO

The existing classification methods for Panax notoginseng taproots suffer from low accuracy, low efficiency, and poor stability. In this study, a classification model based on image feature fusion is established for Panax notoginseng taproots. The images of Panax notoginseng taproots collected in the experiment are preprocessed by Gaussian filtering, binarization, and morphological methods. Then, a total of 40 features are extracted, including size and shape features, HSV and RGB color features, and texture features. Through BP neural network, extreme learning machine (ELM), and support vector machine (SVM) models, the importance of color, texture, and fusion features for the classification of the main roots of Panax notoginseng is verified. Among the three models, the SVM model performs the best, achieving an accuracy of 92.037% on the prediction set. Next, iterative retaining information variables (IRIVs), variable iterative space shrinkage approach (VISSA), and stepwise regression analysis (SRA) are used to reduce the dimension of all the features. Finally, a traditional machine learning SVM model based on feature selection and a deep learning model based on semantic segmentation are established. With the model size of only 125 kb and the training time of 3.4 s, the IRIV-SVM model achieves an accuracy of 95.370% on the test set, so IRIV-SVM is selected as the main root classification model for Panax notoginseng. After being optimized by the gray wolf optimizer, the IRIV-GWO-SVM model achieves the highest classification accuracy of 98.704% on the test set. The study results of this paper provide a basis for developing online classification methods of Panax notoginseng with different grades in actual production.


Assuntos
Panax notoginseng , Máquina de Vetores de Suporte
19.
Plant J ; 108(4): 1116-1130, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547154

RESUMO

Carotenoids are important natural pigments that give bright colors to plants. The difference in the accumulation of carotenoids is one of the key factors in the formation of various colors in carrot taproots. Carotenoid cleavage dioxygenases (CCDs), including CCD and 9-cis epoxycarotenoid dioxygenase, are the main enzymes involved in the cleavage of carotenoids in plants. Seven CCD genes have been annotated from the carrot genome. In this study, through expression analysis, we found that the expression level of DcCCD4 was significantly higher in the taproot of white carrot (low carotenoid content) than orange carrot (high carotenoid content). The overexpression of DcCCD4 in orange carrots caused the taproot color to be pale yellow, and the contents of α- and ß-carotene decreased sharply. Mutant carrot with loss of DcCCD4 function exhibited yellow color (the taproot of the control carrot was white). The accumulation of ß-carotene was also detected in taproot. Functional analysis of the DcCCD4 enzyme in vitro showed that it was able to cleave α- and ß-carotene at the 9, 10 (9', 10') double bonds. In addition, the number of colored chromoplasts in the taproot cells of transgenic carrots overexpressing DcCCD4 was significantly reduced compared with that in normal orange carrots. Results showed that DcCCD4 affects the accumulation of carotenoids through cleavage of α- and ß-carotene in carrot taproot.


Assuntos
Carotenoides/metabolismo , Daucus carota/enzimologia , Dioxigenases/metabolismo , Proteínas de Plantas/metabolismo , Daucus carota/genética , Dioxigenases/genética , Expressão Gênica , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plastídeos/metabolismo , beta Caroteno/metabolismo
20.
J Plant Physiol ; 263: 153468, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34247029

RESUMO

Anthocyanins not only affect the quality of horticultural crops but are also vital for human health. Glutathione transferase family members (GSTs) are enzymes that help to control plant development and stress responses, and are also involved in anthocyanin accumulation. In this study, we targeted a phi (F) class glutathione S-transferase gene RsGST1 (RSG01330.t1) as a crucial gene in the accumulation of anthocyanins in radish. RsGST1 expression was closely associated with anthocyanin content in the skin and flesh of taproot from different color type radish cultivars. Furthermore, RsGST1 was able to restore anthocyanin accumulation in Arabidopsis tt19 mutants, indicating that RsGST1 has a similar function as AtTT19, a gene responsible for the transport of anthocyanins in Arabidopsis. Transient overexpression of RsGST1 together with the key anthocyanin biosynthesis regulator RsMYB1a in radish leaves significantly enhanced anthocyanin biosynthesis compared with in plants that overexpressed RsMYB1a alone. Dual-luciferase and yeast one-hybrid assays revealed that RsMYB1a binds to promotor and activates the expression of RsGST1. Altogether, these results provide molecular evidence indicating that RsGST1 and RsMYB1a coordinate radish anthocyanin accumulation.


Assuntos
Antocianinas/metabolismo , Genes de Plantas , Variação Genética , Glutationa Transferase/metabolismo , Raphanus/genética , Raphanus/metabolismo , Antocianinas/genética , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Glutationa Transferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA