Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Int Immunopharmacol ; 143(Pt 1): 113229, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357208

RESUMO

T-bet and Eomes, both T-box transcription factors, have been extensively studied for their critical roles in the differentiation and functional maintenance of various immune cells. In this review, we provide a focused overview of their contributions to the transcriptional activation and differentiation, development, and terminal maturation of natural killer cells and innate lymphoid cell 1 cells. Furthermore, the interplay between T-bet and Eomes in regulating NK cell function, and its subsequent implications for immune responses against infections and tumors, is thoroughly examined. The review explores the ramifications of dysregulated transcription factor expression, examining its impact on homeostatic balance and its role in a spectrum of disease models. Expression variances among distinct NK cell subsets resident in different tissues are highlighted to underscore the complexity of their biological roles. Collectively, this work aims to expand the current understanding of NK cell biology, thereby paving the way for innovative approaches in the realm of NK cell-based immunotherapies.

2.
Immun Ageing ; 21(1): 59, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237911

RESUMO

Natural killer (NK) cells are crucial innate immune cells that provide defense against viruses and tumors. However, aging is associated with alterations in NK cell composition and compromised cell functions. Melatonin, known for its anti-tumor effects, has been reported to improve NK cell function. However, the molecular mechanism underlying melatonin's effect on senescent NK cells remains unclear. In this study, we aimed to elucidate the mechanism by which melatonin enhances the function of senescent NK cells. Our findings revealed that melatonin significantly increased the number and function of NK cells in aging mice. The results suggest that melatonin enhances NK cell proliferation, degranulation, and IFN-γ secretion. Further investigations demonstrated that melatonin promotes NK cell maturation and activation, mainly via the JAK3/STAT5 signaling pathway, leading to increased expression of T-bet. These discoveries provide a theoretical basis for potential immunotherapy strategies based on melatonin-mediated modulation of NK cell function in aging individuals.

3.
Anticancer Res ; 44(9): 3899-3906, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197911

RESUMO

BACKGROUND/AIM: The local immune response in colorectal cancer is closely related to prognosis and therapeutic efficacy. In this study, histological analyses were performed to determine the phenotype of tumor-infiltrating lymphocytes (TILs) and their infiltration in the stromal and intratumoral regions, aiming to elucidate their interactions and prognostic effects. PATIENTS AND METHODS: Multiplex fluorescent labeling was performed using surgically resected colorectal cancer specimens to investigate the infiltration of CD45RO (+) TILs, which exhibit cytotoxicity, and subsets of CD4 (+) TILs, identified by their characteristic transcription factor expression. RESULTS: The degree of CD45RO (+) TIL infiltration in the entire observation field or stromal area was not associated with prognosis. However, a high degree of infiltration in the tumor nest (intratumoral area) was significantly associated with a favorable prognosis. CD4 (+) TILs and their subsets were not associated with prognosis. However, stratified analyses revealed that a high degree of infiltration of stromal CD4 (+) TILs and the subsets T helper (Th)1, Th2, Th17, and regulatory T cells is necessary for the association between high intratumoral CD45RO (+) TIL infiltration and favorable prognosis. CONCLUSION: A sufficient degree of infiltration of stromal CD4 (+) TIL subsets is required for intratumoral CD45RO (+) TILs to exert toxicity against cancer cells. This highlights the significance of stromal immune reactions in achieving effective cytotoxic immune responses in the intratumoral area and demonstrates the critical role of the spatial distribution pattern of TILs in exerting their functions.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Humanos , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Feminino , Idoso , Prognóstico , Pessoa de Meia-Idade , Antígenos Comuns de Leucócito/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Estromais/imunologia , Células Estromais/patologia , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Idoso de 80 Anos ou mais , Adulto , Citotoxicidade Imunológica
4.
Immunol Res ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869819

RESUMO

The cytotoxicity feature to eliminate malignant cells makes natural killer (NK) cells a candidate for tumor immunotherapy. However, this scenario is currently hampered by inadequate understanding of the regulatory mechanisms of NK cell development. Ten-Eleven-Translocation 2 (Tet2) is a demethylase whose mutation was recently shown to cause phenotypic defects in NK cells. However, the role of Tet2 in the development and maturation of NK cells is not entirely clear. Here we studied the modulatory role of Tet2 in NK cell development and maturation by generating hematopoietic Tet2 knockout mice and mice with Tet2 conditional deletion in NKp46+ NK cells. The results showed that both hematopoietic and NK cell conditional deletion of Tet2 had no effect on the early steps of NK cell development, but impaired the terminal maturation of NK cells defined by CD11b, CD43, and KLRG1 expression. In the liver, Tet2 deletion not only prevented the terminal maturation of NK cells, but also increased the proportion of type 1 innate lymphoid cells (ILC1s) and reduced the proportion of conventional NK cells (cNK). Moreover, hematopoietic deletion of Tet2 lowered the protein levels of perforin in NK cells. Furthermore, hematopoietic deletion of Tet2 downregulated the protein levels of Eomesodermin (Eomes), but not T-bet, in NK cells. In conclusion, our results demonstrate that Tet2 plays an important role in the terminal maturation of NK cells, and the Eomes transcription factor may be involved.

5.
Cell Rep ; 43(5): 114222, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735046

RESUMO

The activation and specialization of regulatory T cells (Tregs) are crucial for maintaining immune self-tolerance; however, the regulation of these processes by histone modifications is not fully understood. Here, we show that T cell-specific deletion of the lysine methyltransferase MLL1 results in a spontaneous lymphocyte proliferation phenotype in aged mice without disturbing the development of conventional T cells and Tregs. Treg-specific MLL1 ablation leads to a systemic autoimmune disease associated with Treg dysfunction. Moreover, RNA sequencing demonstrates that the induction of multiple genes involved in Treg activation, functional specialization, and tissue immigration is defective in MLL1-deficient Tregs. This dysregulation is associated with defects in H3K4 trimethylation at these genes' transcription start sites. Finally, using a T-bet fate-mapping mouse system, we determine that MLL1 is required to establish stable Th1-type Tregs. Thus, MLL1 is essential in optimal Treg function by providing a coordinated chromatin context for activation and specialization.


Assuntos
Histona-Lisina N-Metiltransferase , Ativação Linfocitária , Proteína de Leucina Linfoide-Mieloide , Linfócitos T Reguladores , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Camundongos , Camundongos Endogâmicos C57BL , Histonas/metabolismo , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Metilação , Proliferação de Células
6.
Eur J Immunol ; 54(8): e2350736, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38700378

RESUMO

CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.


Assuntos
Linfócitos B , Antígeno CD11c , Ativação Linfocitária , Proteínas com Domínio T , Receptor Toll-Like 9 , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Antígeno CD11c/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Diferenciação Celular/imunologia , Humanos , Animais , Receptores Fc/metabolismo , Receptores Fc/imunologia , Interferon gama/metabolismo , Interferon gama/imunologia , Células Cultivadas , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Camundongos , Interleucina-6/metabolismo
7.
Phytomedicine ; 129: 155663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759345

RESUMO

BACKGROUNDS: Allergic rhinitis (AR) is a non-infectious chronic inflammation of the nasal mucosa mainly mediated by immunoglobulin E (IgE) in atopic individuals after exposure to allergens. The application of AR guideline-recommended pharmacotherapies can rapidly relieve symptoms of AR but with poor long-term efficacy, and many of these therapies have side effects. Many natural products and their derivatives have shown potential therapeutic effects on AR with fewer side effects. OBJECTIVES: This review aims to expand understanding of the roles and mechanisms of natural compounds in the treatment of AR and to highlight the importance of utilizing natural products in the treatment of AR. MATERIAL AND METHOD: We conducted a systematic literature search using PubMed, Web of Science, Google Scholar, and Clinical Trials. The search was performed using keywords including natural products, natural compounds, bioproducts, plant extracts, naturally derived products, natural resources, allergic rhinitis, hay fever, pollinosis, nasal allergy. Comprehensive research and compilation of existing literature were conducted. RESULTS: This article provided a comprehensive review of the potential therapeutic effects and mechanisms of natural compounds in the treatment of AR. We emphasized that natural products primarily exert their effects by modulating signalling pathways such as NF-κB, MAPKs, STAT3/ROR-γt/Foxp3, and GATA3/T-bet, thereby inhibiting the activation and expansion of allergic inflammation. We also discussed their toxicity and clinical applications in AR therapy. CONCLUSION: Taken together, natural products exhibit great potential in the treatment of AR. This review is also expected to facilitate the application of natural products as candidates for treating AR. Furthermore, drug discovery based on natural products has a promising prospect in AR treatment.


Assuntos
Produtos Biológicos , Rinite Alérgica , Humanos , Rinite Alérgica/tratamento farmacológico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia , Animais , Transdução de Sinais/efeitos dos fármacos , Imunoglobulina E
8.
Cell Mol Immunol ; 21(7): 662-673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740922

RESUMO

Eomesodermin (Eomes) is a critical factor in the development of natural killer (NK) cells, but its precise role in temporal and spatial coordination during this process remains unclear. Our study revealed that Eomes plays distinct roles during the early and late stages of NK cell development. Specifically, the early deletion of Eomes via the CD122-Cre transgene resulted in significant blockade at the progenitor stage due to the downregulation of KLF2, another important transcription factor. ChIP-seq revealed direct binding of Eomes to the conserved noncoding sequence (CNS) of Klf2. Utilizing the CHimeric IMmune Editing (CHIME) technique, we found that deletion of the CNS region of Klf2 via CRISPRi led to a reduction in the NK cell population and developmental arrest. Moreover, constitutive activation of this specific CNS region through CRISPRa significantly reversed the severe defects in NK cell development caused by Eomes deficiency. Conversely, Ncr1-Cre-mediated terminal deletion of Eomes expedited the transition of NK cell subsets from the CD27+CD11b+ phenotype to the CD27-CD11b+ phenotype. Late-stage deficiency of Eomes led to a significant increase in T-bet expression, which subsequently increased the expression of the transcription factor Zeb2. Genetic deletion of one allele of Tbx21, encoding T-bet, effectively reversed the aberrant differentiation of Eomes-deficient NK cells. In summary, we utilized two innovative genetic models to elucidate the intricate mechanisms underlying Eomes-mediated NK cell commitment and differentiation.


Assuntos
Células Matadoras Naturais , Fatores de Transcrição Kruppel-Like , Proteínas com Domínio T , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Diferenciação Celular , Camundongos Endogâmicos C57BL
9.
Clin Exp Immunol ; 217(2): 159-166, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38647337

RESUMO

Apart from serving as a Th1 lineage commitment regulator, transcription factor T-bet is also expressed in other immune cell types and thus orchestrates their functions. In case of B cells, more specifically, T-bet is responsible for their isotype switching to specific IgG sub-classes (IgG2a/c in mice and IgG1/3 in humans). In various autoimmune disorders, such as systemic lupus erythematosus and/or rheumatoid arthritis, subsets of T-bet expressing B cells, known as age-associated B cells (CD19+CD11c+CD21-T-bet+) and/or double-negative B cells (CD19+IgD-CD27-T-bet+), display an expansion and seem to drive disease pathogenesis. According to data, mostly derived from mice models of autoimmunity, the targeting of these specific B-cell populations is capable of ameliorating the general health status of the autoimmune subjects. Here, in this review article, we present a variety of therapeutic approaches for both mice and humans, suffering from an autoimmune disease, and we discuss the effects of each approach on T-bet+ B cells. In general, we highlight the importance of specifically targeting T-bet+ B cells for therapeutic interventions in autoimmunity.


Assuntos
Doenças Autoimunes , Autoimunidade , Linfócitos B , Proteínas com Domínio T , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/imunologia , Proteínas com Domínio T/genética , Humanos , Animais , Autoimunidade/imunologia , Linfócitos B/imunologia , Camundongos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/terapia , Modelos Animais de Doenças
10.
Adv Sci (Weinh) ; 11(28): e2401654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650111

RESUMO

T-bet, encoded by TBX21, is extensively expressed across various immune cell types, and orchestrates critical functions in their development, survival, and physiological activities. However, the role of T-bet in non-immune compartments, notably the epithelial cells, remains obscure. Herein, a Tet-O-T-bet transgenic mouse strain is generated for doxycycline-inducible T-bet expression in adult animals. Unexpectedly, ubiquitous T-bet overexpression causes acute diarrhea, intestinal damage, and rapid mortality. Cell-type-specific analyses reveal that T-bet-driven pathology is not attributable to its overexpression in CD4+ T cells or myeloid lineages. Instead, inducible T-bet overexpression in the intestinal epithelial cells is the critical determinant of the observed lethal phenotype. Mechanistically, T-bet overexpression modulates ion channel and transporter profiles in gut epithelial cells, triggering profound fluid secretion and subsequent lethal dehydration. Furthermore, ectopic T-bet expression enhances gut epithelial cell apoptosis and markedly suppresses colon cancer development in xenograft models. Collectively, the findings unveil a previously unrecognized role of T-bet in intestinal epithelial cells for inducing apoptosis, diarrhea, and local inflammation, thus implicating its potential as a therapeutic target for the treatment of cancer and inflammatory diseases.


Assuntos
Apoptose , Células Epiteliais , Canais Iônicos , Camundongos Transgênicos , Proteínas com Domínio T , Animais , Camundongos , Apoptose/genética , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Humanos , Modelos Animais de Doenças
11.
Biomedicines ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540262

RESUMO

The NK cell exhaustion state evolving during extensive and prolonged cultivation is still one of the limitations of NK cell approaches. In this research, we transduced NK cells with the hTERT and iCasp9 genes. hTERT overexpression can prevent the functional exhaustion of NK cells during long-term cultivation, but, still, the therapeutic use of such cells is unsafe without irradiation. To overcome this obstacle, we additionally transduced NK cells with the iCasp9 transgene that enables the rapid elimination of modified cells. We compared the proliferative and functional activities of the hTERT- and/or iCasp9-modified NK cells, determined their exhaustion state and monitored the levels of EOMES and T-BET, the main NK cell transcription factors. The hTERT and iCasp9 genes were shown to affect the EOMES and T-BET levels differently in the NK cells. The EOMES+T-BET+ phenotype characterized the functionally active NK cells during two months of culture upon stimulation with IL2 and K562-mbIL21 feeder cells, which induced the greatest expansion rates of the NK cells, independently of the transgene type. On the other hand, under cytokine stimulation, the hTERT-iCasp9-NK cells displayed improved proliferation over NK cells modified with iCasp9 alone and showed an increased proliferation rate compared to the untransduced NK cells under stimulation with IL2 and IL15, which was accompanied by reduced immune checkpoint molecule expression. The individual changes in the EOMES and T-BET levels strictly corresponded to the NK cell functional activity, the surface levels of activating and inhibitory receptors along with the expansion rate and expression levels of pro-survival and pro-apoptotic genes.

12.
Int J Immunogenet ; 51(3): 143-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38468428

RESUMO

Genome-wide association studies analysis has revealed associations between ankylosing spondylitis (AS) and loci on the TBX21 gene across various populations. This study aimed to investigate if there is a connection between a higher risk of AS in a Chinese population and two polymorphism loci on the TBX21 gene. To achieve this, we performed a case-control investigation involving 363 patients with AS and 907 healthy individuals. Genotyping was carried out using the iPLEX Gold genotyping assay. The analysis of genotypes and haplotypes was performed using SPSS 23.0 and SHEsis software. The results revealed no statistically significant correlation between the two specified single-nucleotide polymorphisms of TBX21 (rs11657479 C/T and rs4794067 C/T) and susceptibility to AS. However, upon conducting stratification analysis, our findings demonstrated a significant association between rs11657479 and susceptibility to human leucocyte antigen (HLA)-B27+ AS in allelic (C vs. T: odds ratio [OR] = 1.52, 95%CI = 1.09-2.11, corrected p [pc] = .028), heterozygous (CT vs. TT: OR = 1.63, 95%CI = 1.13-2.34, pc = .016) and dominant (CT + CC vs. TT: OR = 1.60, 95%CI = 1.12-2.28, pc = .018) models. Furthermore, the haplotype rs4794067/C-rs11657479/C of TBX21 was found to increase the risk of HLA-B27+ AS cases. In conclusion, our findings indicate a correlation between TBX21 gene polymorphism and HLA-B27+ AS patients within the Chinese population.


Assuntos
Povo Asiático , Predisposição Genética para Doença , Haplótipos , Polimorfismo de Nucleotídeo Único , Espondilite Anquilosante , Proteínas com Domínio T , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , China , População do Leste Asiático , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Antígeno HLA-B27/genética , Espondilite Anquilosante/genética , Proteínas com Domínio T/genética
13.
Cell Biochem Funct ; 42(1): e3929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269504

RESUMO

Myeloid-derived suppressor cells (MDSC) are a group of immature inhibitory cells of bone marrow origin. Human γδ T cells (mainly Vγ9Vδ2 T cells) have emerged as dominant candidates for cancer immunotherapy because of their unique recognition pattern and broad killing activity against tumor cells. Intestinal mucosal intraepithelial lymphocytes are almost exclusively γδ T cells, so it plays an important role in inhibiting the development of colorectal cancer. In this study, we investigated the effects and molecular mechanism of human MDSC on anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our results suggested that MDSC can reduce the NKG2D expression of Vγ9Vδ2 T cells through direct cell-cell contact, which is associated with membrane-type transforming growth factor-ß. In contrast, MDSC can increase Vγ9Vδ2 T cells activation and production of IFN-γ, perforin, Granzyme B through direct cell-cell contact. This may be related to the upregulation of T-bet in Vγ9Vδ2 T cells by MDSC. However, MDSC had a dominant negative regulatory effect on the anticolorectal cancer cells activity of Vγ9Vδ2 T cells. Our study provides a theoretical basis for the immune regulatory function of human MDSC on γδ T cells. This will be conducive to the clinical development of a new antitumor therapy strategy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Linfócitos T , Ativação Linfocitária , Fator de Crescimento Transformador beta , Regulação para Cima
14.
J Allergy Clin Immunol ; 153(1): 12-27, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890706

RESUMO

Repetitive or persistent cellular stimulation in vivo has been associated with the development of a heterogeneous B-cell population that exhibits a distinctive phenotype and, in addition to classical B-cell markers, often expresses the transcription factor T-bet and myeloid marker CD11c. Research suggests that this atypical population consists of B cells with distinct B-cell receptor specificities capable of binding the antigens responsible for their development. The expansion of this population occurs in the presence of chronic inflammatory conditions and autoimmune diseases where different nomenclatures have been used to describe them. However, as a result of the diverse contexts in which they have been investigated, these cells have remained largely enigmatic, with much ambiguity remaining regarding their phenotype and function in humoral immune response as well as their role in autoimmunity. Atypical B cells have garnered considerable interest because of their ability to produce specific antibodies and/or autoantibodies and because of their association with key disease manifestations. Although they have been widely described in the context of adults, little information is present for children. Therefore, the aim of this narrative review is to describe the characteristics of this population, suggest their function in pediatric immune-related diseases and chronic infections, and explore their potential therapeutic avenues.


Assuntos
Doenças Autoimunes , Doenças Transmissíveis , Adulto , Humanos , Criança , Linfócitos B , Autoanticorpos , Receptores de Antígenos de Linfócitos B , Autoimunidade
15.
J Leukoc Biol ; 115(3): 497-510, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37930711

RESUMO

Primary Sjögren's disease (pSD) (also referred to as Sjögren's syndrome) is an autoimmune disease that primarily occurs in women. In addition to exocrine gland dysfunction, pSD patients exhibit B cell hyperactivity. B cell-intrinsic TLR7 activation is integral to the pathogenesis of systemic lupus erythematosus, a disease that shares similarities with pSD. The role of TLR7-mediated B cell activation in pSD, however, remains poorly understood. We hypothesized that age-associated B cells (ABCs) were expanded in pSD and that TLR7-stimulated ABCs exhibited pathogenic features characteristic of disease. Our data revealed that ABC expansion and TLR7 expression were enhanced in a pSD mouse model in a Myd88-dependent manner. Splenocytes from pSD mice showed enhanced sensitivity to TLR7 agonism as compared with those derived from control animals. Sort-purified marginal zone B cells and ABCs from pSD mice showed enhanced inflammatory cytokine secretion and were enriched for antinuclear autoantibodies following TLR7 agonism. Finally, IgG from pSD patient sera showed elevated antinuclear autoantibodies, many of which were secreted preferentially by TLR7-stimulated murine marginal zone B cells and ABCs. These data indicate that pSD B cells are hyperresponsive to TLR7 agonism and that TLR7-activated B cells contribute to pSD through cytokine and autoantibody production. Thus, therapeutics that target TLR7 signaling cascades in B cells may have utility in pSD patients.


Assuntos
Anticorpos Antinucleares , Síndrome de Sjogren , Humanos , Camundongos , Feminino , Animais , Autoanticorpos , Receptor 7 Toll-Like/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
16.
Eur J Immunol ; 54(2): e2350544, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009648

RESUMO

Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.


Assuntos
Antígenos CD28 , Esclerose Múltipla , Humanos , Encéfalo/patologia , Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Granzimas/metabolismo , Esclerose Múltipla/genética
17.
Pathol Res Pract ; 253: 155010, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101155

RESUMO

INTRODUCTION: Evaluate the immunohistochemical expression of T-bet and IFN-γ in lower lip (LLSCC) and oral tongue squamous cell carcinoma (OTSCC), verifying the presence of Th1 responses in lesions with different clinical conditions. METHODS AND MATERIALS: Thirty OTSCC and 30 LLSCC were analyzed by immunohistochemistry. T-bet was quantitatively assessed by parenchyma cell and stroma quantification, and IFN-γ was semi-quantitatively analyzed: 1:0-25%; 2:26-50%; 3:51-75%; 4:> 75% immunopositive cells. Histological differentiation degrees were categorized as well differentiated (WD), moderately differentiated (MD), or poorly differentiated (PD). RESULTS: OTSCC presented the highest number of T-bet+, parenchyma (p: 0.006), stroma (p: 0.156), parenchyma/stroma (p: 0.015), with no relationship to histological malignancy grade. IFN-γ higher concentrations in LLSCC were detected in parenchyma, stroma and in parenchyma/stroma (p: 0.000), as well as greater immunoreactivity in WD and MD (p: 0.001). In OTSCC, a positive and statistically significant correlation was observed between T-bet+ in parenchyma and IFN-γ in stroma(r: 0.388; p: 0.034), in addition to a statistically significant positive correlation between T-bet in parenchyma compared to stroma(r: 0.411; p: 0.024) and for IFN-γ in both parenchyma and stroma(r: 0.775; p: 0.000) in LLSCC. Higher T-bet+ was observed in OTSCCs, although higher IFN-γ was detected in LLSCCs. CONCLUSION: Thus, we suggest that, even though LLSCC presented lower T-bet+, the favorable microenvironment in these lesions led to an expressive activation of IFN-γ by T-bet+, considerably acting on Th1 differentiation and in antitumor activity, which, admittedly, present less aggressive behavior, reinforcing once again the important role of this cytokine and its use in strategy to fight cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Lábio/metabolismo , Células Th1/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Proteínas com Domínio T/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(9): 1296-1303, 2023.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38044640

RESUMO

OBJECTIVES: The differentiation of CD4+ T cells is regulated by a complex and fine signaling pathway composed of many molecules during immune response, and the molecular mechanism for regulating T-bet expression is unclear. Mediator complex subunit 1 (Med1) can combine with a variety of co-factors to regulate gene transcription, promote cell proliferation and survival, and affect invariant natural killer T cell (iNKT) development. This study aims to investigate the effect of Med1 on T cell development and CD4+ T cell differentiation in immune response. METHODS: Mice with T cell-specific knockout of Med1 gene (Med1F/FCD4cre+, KO) were constructed and verified. The percentage and number of CD4+ and CD8+ T cells in thymus, spleen, and lymph nodes of KO mice and control (Con) mice (Med1F/FCD4cre-) were detected by flow cytometry. After 8 days of infection with lymphocytic choriomeningitis virus (LCMV), the percentage and number of CD4+ T cells or antigen-specific (GP66+) CD4+ T cells, the percentage and number of Th1 cells (Ly6c+PSGL1+) in CD4+ T cells or antigen-specific CD4+ T cells were examined in the spleen of mice. Moreover, the fluorescence intensity of T-bet in CD4+ T cells or antigen-specific CD4+ T cells was analyzed. RESULTS: Compared with the Con group, the percentage and number of CD4+ T cells and CD8+ T cells in the thymus, CD4+ T cells in the spleen and lymph nodes of the KO group showed no significant differences (all P>0.05), but the percentage and number of CD8+ T cells in the spleen and lymph nodes of the KO group were diminished significantly (all P<0.05). After 8 days of infection with LCMV, there was no significant difference in the percentage and number of CD4+ T cells or antigen-specific CD4+ T cells in the spleen between the KO group and the Con group (all P>0.05), while in comparison with the Con group, the percentage and number of Th1 cells in CD4+ T cells or antigen-specific CD4+ T cells, and the expression of T-bet in CD4+ T cells or antigen-specific CD4+ T cells were significantly reduced in the spleen of the KO group (all P<0.05). CONCLUSIONS: Specific knockout of Med1 in T cells does not affect the development of CD4+ and CD8+ T cells in the thymus, but does affect the maintenance of peripheral CD8+ T cells. In the immune response, Med1 gene deletion affects the expression of transcription factor T-bet, which in turn to reduce Th1 cell differentiation.


Assuntos
Linfócitos T CD8-Positivos , Subunidade 1 do Complexo Mediador , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Subunidade 1 do Complexo Mediador/metabolismo , Imunidade , Diferenciação Celular , Vírus da Coriomeningite Linfocítica/metabolismo , Células Th1/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL
19.
Immun Ageing ; 20(1): 59, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950255

RESUMO

BACKGROUND: The involvement of the peripheral immune system in the etiology of neurodegenerative diseases has recently been emphasized. Genome-wide association studies (GWAS) have recently identified several candidate immune genes linked to development of both Alzheimer's disease (AD) and depression. TBX21 (T-bet) which drives the Th1 immune response, is linked to the major depressive disorder (MDD) phenotype. This study investigated the association between the TBX21 immune gene and the possibility of late-onset Alzheimer's disease (LOAD) incidence in 194 LOAD and 200 control subjects using the real-time qPCR and the Tetra-ARMS-PCR methods. We also used an in silico approach to analyze the potential effects imparted by TBX21 rs17244587 and rs41515744 polymorphisms in LOAD pathogenesis. RESULTS: We found that the TBX21 "immune gene" had significantly elevated mRNA expression levels in the leukocytes of peripheral blood in patients with LOAD (P < 0.0001). We also found an upward trend in TBX21 expression with increasing age in LOAD patients compared to the control group (P < 0.05; CI = 95%). We noticed that the TT genotype of rs41515744 plays a protective role in LOAD incidence, as it attenuates the expression of TBX21 in the control group. We observed that the dominant model of rs41515744 represented a substantial association with LOAD (P = 0.019). CONCLUSIONS: Our results show for the first time the likely impact of the TBX21 (T-bet) immune gene in LOAD development and that the elevated TBX21 mRNAs in the WBCs of LOAD patients may represent a new easy diagnostic test for Alzheimer's disease.

20.
Biochem Biophys Res Commun ; 682: 266-273, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832383

RESUMO

OBJECTIVE: To investigate the effect of the transcription factor T-bet on the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the regulation of the intrahepatic immune microenvironment. METHODS: Wild-type and T-bet knockout NASH mouse models were constructed. The effect of T-bet knockout on the pathogenesis of NAFLD was observed by histochemical staining. The expression of T-bet in immune cells in the liver and the effect of T-bet knockout on the proportion and function of immune cell subsets in the liver were determined by flow analysis. RESULTS: Flow cytometry results indicated that T-bet expression was increased in immune cells, especially NKT cells, in the livers of NAFLD mice. Knocking out the transcription factor T-bet reduced intrahepatic inflammation, reduced lipid accumulation, and ameliorated the pathogenesis of NAFLD. Based on the analysis of immune cell subsets, knocking out the transcription factor T-bet decreased the proportion, survival, and degree of activation of NK, NKT, and CD8 T cells in NAFLD liver; additionally, it decreased the secretion of IFN-γ by T cells and NKT cells but had no effect on the proportion of Th17 cells and Treg cells. Knocking out the transcription factor T-bet also reduced the proportion of proinflammatory myeloid-derived macrophages (MoMFs) in NAFLD liver, mainly the proportion of proinflammatory Ly6Chigh MoMFs. Furthermore, knocking out the transcription factor T-bet had no significant effect on the secretion of TNF-α from MoMFs but significantly reduced the expression of MHC class II molecules. Further analysis showed that the transcription factor T-bet may directly affect the expression of MHC class II molecules H2-AB1 and H2-Dmb1 through transcriptional regulation. CONCLUSIONS: Knocking out the transcription factor T-bet reduced the proinflammatory effect of innate immune cells (MoMFs, NK cells, and NKT cells) and T lymphocytes in NAFLD liver, thereby reducing intrahepatic inflammation and delaying the pathogenesis of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação/patologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA