Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(6)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328748

RESUMO

The impact of oral microbial dysbiosis on Alzheimer's disease (AD) remains controversial. Building off recent studies reporting that various microbes might directly seed or promote amyloid ß (Aß) deposition, we evaluated the effects of periodontal bacteria (Porphyromonas gingivalis, Treponema denticola) and supragingival commensal (Streptococcus gordonii) oral bacterial infection in the APP-transgenic CRND8 (Tg) mice model of AD. We tracked bacterial colonization and dissemination, and monitored effects on gliosis and amyloid deposition. Chronic oral infection did not accelerate Aß deposition in Tg mice but did induce alveolar bone resorption, IgG immune response, and an intracerebral astrogliosis (GFAP: glial fibrillary acidic protein). In contrast, intracerebral inoculation of live but not heat-killed P. gingivalis increased Aß deposition and Iba-1 (ionized calcium-binding adaptor-1) microgliosis after 8 weeks of bacterial infection but not at 4 days. These data show that there may be differential effects of infectious microbes on glial activation and amyloid deposition depending on the species and route of inoculation, and thereby provide an important framework for future studies. Indeed, these studies demonstrate marked effects on amyloid ß deposition only in a fairly non-physiologic setting where live bacteria is injected directly into the brain.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/metabolismo , Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Gliose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/metabolismo , Porphyromonas gingivalis/metabolismo
2.
Neuropathol Appl Neurobiol ; 47(5): 611-624, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33341972

RESUMO

AIMS: Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice. However, it remains to be shown whether long-term reversal of KLK8 overexpression can also counteract AD. Therefore, the effects of genetic Klk8-knockdown were determined in TgCRND8 mice. METHODS: The effects of heterozygous ablation of murine Klk8 (mKlk8) gene on AD pathology of both sexes were examined by crossbreeding TgCRND8 [hAPP+/-] with mKlk8-knockdown [mKlk8+/-] mice resulting in animals with or without AD pathology which revealed pathologically elevated or normal KLK8 levels. RESULTS: mKlk8-knockdown had negligible effects on wildtype animals but led to significant decline of amyloid beta (Aß) and tau pathology as well as an improvement of structural neuroplasticity in a sex-specific manner in transgenics. These changes were mediated by a shift to non-amyloidogenic cleavage of the human amyloid precursor protein (APP), recovery of the neurovascular unit and maintaining microglial metabolic fitness. Mechanistically, Klk8-knockdown improved Aß phagocytosis in primary glia and Aß resistance in primary neurons. Most importantly, transgenic mice revealed less anxiety and a better memory performance. CONCLUSIONS: These results reinforce the potential of KLK8 as a therapeutic target in AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Calicreínas/genética , Fatores Sexuais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/patologia , Neurônios/patologia
3.
Exp Neurol ; 324: 113115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31734318

RESUMO

We recently identified excessive cerebral kallikrein-8 (KLK8) mRNA and protein levels at incipient stages of Alzheimer's disease (AD) in AD patients and TgCRND8 mice. Additionally, we showed that antibody-mediated KLK8 inhibition exerts therapeutic effects on AD along with enhancing neuroplasticity, resulting in improved spatial memory in mice. Mounting evidence further substantiates an important role of the protease KLK8 in neuroplasticity. In the present study we sought to gain new mechanistic insights in the interplay between KLK8, neuroplasticity and tau phosphorylation in the context of AD. We here demonstrate that KLK8 inhibition increased the number of hippocampal Ki-67 and doublecortin positive, proliferative neuronal progenitor cells in transgenic mice, whereas the same action in wildtypes had no effect. In line with these results, KLK8 inhibition reduced the levels of its pro-proliferative interaction partners KLK6 and protease-activated receptor 2 only in wildtypes, while the levels of its proliferation-supporting substrate neuregulin-1 and the non-complexed form of its complexing-partner phosphatidylethanolamine binding protein 1 were enhanced in both genotypes. Concomitant incubation of beta-amyloid (Aß)-producing primary neurons with KLK8 and its inhibitory antibody increased neurite complexity and soma size. KLK8 inhibition in SH-SY5Y cells or in primary neurons increased levels of the neuroplasticity-supporting KLK8 substrate ephrin receptor B2 (EPHB2) and total tau while decreasing the relative amount of phospho-tau in relation to total tau. KLK8 blockade further enhanced cell proliferation in SH-SY5Y cells. Additional co-incubation with an inhibitory anti-EPHB2 antibody decreased total tau levels and neurite complexity and increased the ratio of phospho-tau/total tau, underlining the key role of EPHB2 on this plastic change. In a reverse in vitro approach, KLK8 induction reduced EPHB2 and total tau and increased the ratio of phospho-tau/total tau, leading to impaired proliferation and neuronal differentiation. These results underline the therapeutic potential of KLK8 inhibition by counteracting plasticity deficits in AD-affected brain.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Calicreínas/antagonistas & inibidores , Plasticidade Neuronal/efeitos dos fármacos , Doença de Alzheimer/psicologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Anticorpos Bloqueadores/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Neurônios/efeitos dos fármacos , Fosforilação , Receptor EphB2/antagonistas & inibidores , Receptor EphB2/imunologia , Receptor EphB2/metabolismo , Memória Espacial , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA