Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Microbiol ; 24(1): 91, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500062

RESUMO

BACKGROUND: Probiotics are a potentially effective therapy for inflammatory bowel disease (IBD); IBD is linked to impaired gut microbiota and intestinal immunity. However, the utilization of an antibiotic cocktail (Abx) prior to the probiotic intervention remains controversial. This study aims to identify the effect of Abx pretreatment from dextran sulfate sodium (DSS)-induced colitis and to evaluate whether Abx pretreatment has an enhanced effect on the protection of Clostridium butyricum Miyairi588 (CBM) from colitis. RESULTS: The inflammation, dysbiosis, and dysfunction of gut microbiota as well as T cell response were both enhanced by Abx pretreatment. Additionally, CBM significantly alleviated the DSS-induced colitis and impaired gut epithelial barrier, and Abx pretreatment could enhance these protective effects. Furthermore, CBM increased the benefit bacteria abundance and short-chain fatty acids (SCFAs) level with Abx pretreatment. CBM intervention after Abx pretreatment regulated the imbalance of cytokines and transcription factors, which corresponded to lower infiltration of Th1 and Th17 cells, and increased Th2 cells. CONCLUSIONS: Abx pretreatment reinforced the function of CBM in ameliorating inflammation and barrier damage by increasing beneficial taxa, eliminating pathogens, and inducing a protective Th2 cell response. This study reveals a link between Abx pretreatment, microbiota, and immune response changes in colitis, which provides a reference for the further application of Abx pretreatment before microbiota-based intervention.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Probióticos , Humanos , Animais , Camundongos , Antibacterianos/efeitos adversos , Células Th2 , Células Th17 , Colite/induzido quimicamente , Colite/prevenção & controle , Probióticos/farmacologia , Inflamação , Imunidade , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983017

RESUMO

The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer-BioNTech and Moderna developed updated bivalent vaccines-Comirnaty and Spikevax-to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacina BNT162 , Pandemias , Vacinas de mRNA , Vacinas Combinadas
3.
Curr Res Immunol ; 3: 73-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569633

RESUMO

The extracellular level of adenosine increases greatly during inflammation, which modulates immune responses. We have previously reported that adenosine enhances Th17 responses while it suppresses Th1 responses. This study examined whether response of DC to adenosine contributes to the biased effect of adenosine and determined whether adenosine and TLR ligands have counteractive or synergistic effects on DC function. Our results show that adenosine is actively involved in both in vitro and in vivo activation of pathogenic T cells by DCs; however, under adenosine effect DCs' capability of promoting Th1 versus Th17 responses are dissociated. Moreover, activation of A2ARs on DCs inhibits Th1 responses whereas activation of A2BRs on DC enhances Th17 responses. An intriguing observation was that TLR engagement switches the adenosine receptor from A2ARs to A2BRs usage of bone marrow-derived dendritic cells (BMDCs) and adenosine binding to BMDCs via A2BR converts adenosine's anti-to proinflammatory effect. The dual effects of adenosine and TLR ligand on BMDCs synergistically enhances the Th17 responses whereas the dual effect on Th1 responses is antagonistic. The results imply that Th17 responses will gain dominance when inflammatory environment accumulates both TLR ligands and adenosine and the underlying mechanisms include that TLR ligand exposure has a unique effect switching adenosine receptor usage of DCs from A2ARs to A2BRs, via which Th17 responses are promoted. Our observation should improve our understanding on the balance of Th1 and Th17 responses in the pathogenesis of autoimmune and other related diseases.

4.
Front Immunol ; 13: 937577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032166

RESUMO

Changes in microbiome (dysbiosis) contribute to severity of allergic asthma. Preexisting epidemiological studies in humans correlate perinatal dysbiosis with increased long-term asthma severity. However, these studies cannot discriminate between prenatal and postnatal effects of dysbiosis and suffer from a high variability of dysbiotic causes ranging from antibiotic treatment, delivery by caesarian section to early-life breastfeeding practices. Given that maternal antibiotic exposure in mice increases the risk of newborn bacterial pneumonia in offspring, we hypothesized that prenatal maternal antibiotic-induced dysbiosis induces long-term immunological effects in the offspring that also increase long-term asthma severity. Therefore, dams were exposed to antibiotics (gentamycin, ampicillin, vancomycin) from embryonic day 15 until birth. Six weeks later, asthma was induced in the offspring by repeated applications of house dust mite extract. Airway function, cytokine production, pulmonary cell composition and distribution were assessed. Our study revealed that prenatally induced dysbiosis in mice led to an increase in pulmonary Th17+ non-conventional T cells with limited functional effect on airway resistance, pro-asthmatic Th2/Th17 cytokine production, pulmonary localization and cell-cell contacts. These data indicate that dysbiosis-related immune-modulation with long-term effects on asthma development occurs to a lesser extent prenatally and will allow to focus future studies on more decisive postnatal timeframes.


Assuntos
Asma , Células Th2 , Animais , Antibacterianos , Citocinas , Disbiose , Feminino , Humanos , Camundongos , Gravidez
5.
World J Gastroenterol ; 28(4): 402-411, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125826

RESUMO

The inflammatory pattern during Helicobacter pylori (H. pylori) infection is changeable and complex. During childhood, it is possible to observe a predominantly regulatory response, evidenced by high concentrations of key cytokines for the maintenance of Treg responses such as TGF-ß1 and IL-10, in addition to high expression of the transcription factor FOXP3. On the other hand, there is a predominance of cytokines associated with the Th1 and Th17 responses among H. pylori-positive adults. In the last few years, the participation of the Th17 response in the gastric inflammation against H. pylori infection has been highlighted due to the high levels of TGF-ß1 and IL-17 found in this infectious scenario, and growing evidence has supported a close relationship between this immune response profile and unfavorable outcomes related to the infection. Moreover, this cytokine profile might play a pivotal role in the effectiveness of anti-H. pylori vaccines. It is evident that age is one of the main factors influencing the gastric inflammatory pattern during the infection with H. pylori, and understanding the immune response against the bacterium can assist in the development of alternative prophylactic and therapeutic strategies against the infection as well as in the comprehension of the pathogenesis of the outcomes related to that microorganism.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Adulto , Fatores de Transcrição Forkhead , Mucosa Gástrica , Humanos , Linfócitos T Reguladores
6.
Helicobacter ; 27(2): e12875, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35092634

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, H. pylori is eradicated by the use of antibiotics. However, elevated antibiotic resistance suggests new therapeutic strategies need to be envisioned: one approach being prophylactic vaccination. Pre-clinical and clinical data show that a urease-based vaccine is efficient in decreasing H. pylori infection through the mobilization of T helper (Th) cells, especially Th17 cells. Th17 cells produce interleukins such as IL-22 and IL-17, among others, and are key players in vaccine efficacy. Recently, granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing Th17 cells have been identified. AIM: This study explores the possibility that GM-CSF plays a role in the reduction of H. pylori infection following vaccination. RESULTS: We demonstrate that GM-CSF+ IL-17+ Th17 cells accumulate in the stomach mucosa of H. pylori infected mice during the vaccine-induced reduction of H. pylori infection. Secondly, we provide evidence that vaccinated GM-CSF deficient mice only modestly reduce H. pylori infection. Conversely, we observe that an increase in GM-CSF availability reduces H. pylori burden in chronically infected mice. Thirdly, we show that GM-CSF, by acting on gastric epithelial cells, promotes the production of ßdefensin3, which exhibits H. pylori bactericidal activities. CONCLUSION: Taken together, we demonstrate a key role of GM-CSF, most probably originating from Th17 cells, in the vaccine-induced reduction of H. pylori infection.


Assuntos
Vacinas Bacterianas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Infecções por Helicobacter , Helicobacter pylori , Animais , Vacinas Bacterianas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/prevenção & controle , Camundongos , Células Th17 , Vacinação
7.
Front Microbiol ; 12: 757375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759909

RESUMO

Dose-sparing intradermal (ID) vaccination may induce the same immune responses as intramuscular (IM) vaccination, which can increase vaccine supplies and save costs. In this study, rats were immunized with fractional-dose of Sabin-derived IPV combined with diphtheria-tetanus-acellular pertussis vaccine (DTaP-sIPV) intradermally with hollow microneedle devices called MicronJet600 and the vaccine immunogenicity and efficacy were evaluated and compared with those of full-dose intramuscular immunization. We tested levels of antibodies and the subclass distribution achieved via different immunization routes. Furthermore, gene transcription in the lung and spleen, cytokine levels and protection against Bordetella pertussis (B. pertussis) infection were also examined. The humoral immune effect of DTaP-sIPV delivered with MicronJet600 revealed that this approach had a significant dose-sparing effect and induced more effective protection against B. pertussis infection by causing Th1/Th17 responses. In conclusion, ID immunization of DTaP-sIPV with the MicronJet600 is a better choice than IM immunization, and it has the potential to be a new DTaP-sIPV vaccination strategy.

8.
Med Mycol ; 60(1)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34734270

RESUMO

Pneumocystis jirovecii colonization is frequent during chronic obstructive pulmonary disease (COPD) and patients constitute potential contributors to its interhuman circulation. However, the existence of an environmental reservoir cannot be excluded. We assessed the prevalence and factors associated with Pneumocystis colonization during COPD, and studied circulation between patients and their domestic environment. Pneumocystis molecular detection and mtLSU genotyping were performed in oro-pharyngeal washes (OPW) sampled in 58 patients with COPD acute exacerbation, and in indoor dust, sampled in patients' homes using electrostatic dust collectors (EDCs). Lung and systemic inflammation was assessed. Pneumocystis carriage was evaluated in 28 patients after 18 months at stable state. Pneumocystis was detected in 11/58 OPWs during exacerbation (19.0%). Colonized patients presented a significantly lower body mass index, and higher serum IL-17 and CD62P. One patient presented positive detection of typable isolates in both OPW and EDC, with both isolates harboring mtLSU genotype 3. Pneumocystis genotype 1 was further detected in EDCs from three non-colonized patients and one colonized patient with non-typable isolate. Genotypes 1 and 2 were predominant in clinical isolates (both 42%), with genotype 3 representing 16% of isolates. Pneumocystis was detected in 3/28 patients at stable state (10.7%). These data suggest that Pneumocystis colonization could be facilitated by a lower BMI and be related to acute alteration of lung function during COPD exacerbation. It also suggests Th17 pathway and platelet activation could be involved in the anti-Pneumocystis response during colonization. Last, Pneumocystis detection in EDCs supports its potential persistence in indoor dust. LAY SUMMARY: Chronic obstructive pulmonary disease patients tend to be more frequently colonized by Pneumocystis during exacerbation (19.0%) than at stable state (10.7%). Factors associated with colonization include lower BMI, higher IL-17, and CD62P. Pneumocystis detection in patients' dwellings suggests potential persistence in indoor dust.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Doença Pulmonar Obstrutiva Crônica , Genótipo , Ambiente Domiciliar , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações
9.
Respir Res ; 22(1): 263, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34629055

RESUMO

BACKGROUND: Inhalation of fungal spores is a strong risk factor for severe asthma and experimentally leads to development of airway mycosis and asthma-like disease in mice. However, in addition to fungal spores, humans are simultaneously exposed to other inflammatory agents such as lipopolysaccharide (LPS), with uncertain relevance to disease expression. To determine how high dose inhalation of LPS influences the expression of allergic airway disease induced by the allergenic mold Aspergillus niger (A. niger). METHODS: C57BL/6J mice were intranasally challenged with the viable spores of A. niger with and without 1 µg of LPS over two weeks. Changes in airway hyperreactivity, airway and lung inflammatory cell recruitment, antigen-specific immunoglobulins, and histopathology were determined. RESULTS: In comparison to mice challenged only with A. niger, addition of LPS (1 µg) to A. niger abrogated airway hyperresponsiveness and strongly attenuated airway eosinophilia, PAS+ goblet cells and TH2 responses while enhancing TH1 and TH17 cell recruitment to lung. Addition of LPS resulted in more severe, diffuse lung inflammation with scattered, loosely-formed parenchymal granulomas, but failed to alter fungus-induced IgE and IgG antibodies. CONCLUSIONS: In contrast to the strongly allergic lung phenotype induced by fungal spores alone, addition of a relatively high dose of LPS abrogates asthma-like features, replacing them with a phenotype more consistent with acute hypersensitivity pneumonitis (HP). These findings extend the already established link between airway mycosis and asthma to HP and describe a robust model for further dissecting the pathophysiology of HP.


Assuntos
Alveolite Alérgica Extrínseca/microbiologia , Aspergillus niger/patogenicidade , Hiper-Reatividade Brônquica/microbiologia , Lipopolissacarídeos , Pulmão/microbiologia , Aspergilose Pulmonar/microbiologia , Esporos Fúngicos/patogenicidade , Alveolite Alérgica Extrínseca/induzido quimicamente , Alveolite Alérgica Extrínseca/imunologia , Alveolite Alérgica Extrínseca/fisiopatologia , Animais , Aspergillus niger/imunologia , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Broncoconstrição , Modelos Animais de Doenças , Eosinófilos/imunologia , Exposição por Inalação , Pulmão/imunologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Aspergilose Pulmonar/imunologia , Aspergilose Pulmonar/fisiopatologia , Esporos Fúngicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
10.
Virulence ; 12(1): 2546-2561, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605365

RESUMO

Accumulating evidence suggests that two chronic respiratory diseases, nontuberculous mycobacterium (NTM)-pulmonary disease (PD) and allergic asthma, are frequently present together and that they likely influence the disease development and progression of each other. However, their precise interactions regarding the pathogenesis of comorbid diseases versus that of individual diseases are not well understood. In this study, comorbid diseases (i.e., Mycobacteria avium (Mav) pulmonary infection (PI) (Mav-PI) and ovalbumin-induced allergic asthma) were established in mice in different orders and at different time periods. Individual disease-specific characteristics, including alterations in immune cell populations and antigen-specific immune responses, were analyzed and compared. To assess Mav-PI pathogenesis, lung inflammation and bacterial burden levels were also determined. Allergic asthma induction in the presence of Mav-PI markedly aggravated Mav-PI pathogenesis by increasing the bacterial burden and the severity of lung inflammation. Interestingly, the general outcome of allergic asthma with goblet cell hyperplasia was alleviated at a chronic stage in the comorbid mouse model. Overall, the increase in the number of Mav CFUs was inversely correlated with the Mav-specific Th17 response, as confirmed by comparing BALB/c and C57BL/6J mice. Overall, the pathogenesis of existing Mav-PI is more severely affected by allergen exposure than vice versa. This Mav-PI exacerbation is associated with disruption of Mav-specific Th17 responses. This study provides the first evidence that the Mav-specific Th17 response plays an important role in the control of Mav pathogenesis in the presence of allergic asthma, indicating that targeting the Th17 response has therapeutic potential for NTM-PD accompanied by allergic asthma.


Assuntos
Asma , Infecções por Mycobacterium não Tuberculosas , Mycobacterium , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium avium , Células Th17
11.
Cells ; 10(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205262

RESUMO

COVID-19 is an acute infectious disease of the respiratory system caused by infection with the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome Coronavirus 2). Transmission of SARS-CoV-2 infections occurs through droplets and contaminated objects. A rapid and well-coordinated immune system response is the first line of defense in a viral infection. However, a disturbed and over-activated immune response may be counterproductive, causing damage to the body. Severely ill patients hospitalised with COVID-19 exhibit increased levels of many cytokines, including Interleukin (IL)-1ß, IL-2, IL-6, IL-7, IL-8, IL-10, IL-17, granulocyte colony stimulating factor (G-CSF), monocyte chemoattractant protein 1 (MCP-1) and tumor necrosis factor (TNF). Increasing evidence suggests that Th17 cells play an important role in the pathogenesis of COVID-19, not only by activating cytokine cascade but also by inducing Th2 responses, inhibiting Th1 differentiation and suppressing Treg cells. This review focuses on a Th17 pathway in the course of the immune response in COVID-19, and explores plausible targets for therapeutic intervention.


Assuntos
COVID-19/imunologia , Imunidade Celular/fisiologia , Células Th17/fisiologia , COVID-19/patologia , COVID-19/terapia , Citocinas/metabolismo , Humanos , Imunoterapia Adotiva/métodos , SARS-CoV-2/imunologia , Células Th17/metabolismo
12.
Int J Cardiol ; 339: 93-98, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34224767

RESUMO

BACKGROUND: Immune dysregulation is implicated in the development and clinical outcomes of peripartum cardiomyopathy (PPCM). METHODS AND RESULTS: 98 women with PPCM were enrolled and followed for 1 year postpartum (PP). LVEF was assessed at entry, 6-, and 12-months PP by echocardiography. Serum levels of soluble interleukin (IL)-2 receptor (sIL2R), IL-2, IL-4, IL-17, IL-22, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ were measured by ELISA at entry. Cytokine levels were compared between women with PPCM by NYHA class. Outcomes including myocardial recovery and event-free survival were compared by cytokine tertiles. For cytokines found to impact survival outcomes, parameters indicative of disease severity including baseline LVEF, medications, and use of inotropic and mechanical support were analyzed. Levels of proinflammatory cytokines including IL-17, IL-22, and sIL2R, were elevated in higher NYHA classes at baseline. Subjects with higher IL-22 levels were more likely to require inotropic or mechanical support. Higher levels of TNF-α and IL-22 were associated with poorer event-free survival. Higher TNF-α levels were associated with lower mean LVEF at entry and 12 months. In contrast, higher levels of immune-regulatory cytokines such as IL-4 and IL-2 were associated with higher LVEF during follow up. CONCLUSION: Proinflammatory cytokines IL-22 and TNF-α were associated with adverse event-free survival. IL-17 and IL-22 were associated with more severe disease. In contrast, higher levels of IL-2 and IL-4 corresponded with higher subsequent LVEF. Increased production of TH17 type cytokines in PPCM correlated with worse disease and outcomes, while an increased immune-regulatory response seems to be protective.


Assuntos
Cardiomiopatias , Período Periparto , Cardiomiopatias/diagnóstico por imagem , Citocinas , Feminino , Humanos , Índice de Gravidade de Doença , Células Th17
13.
Front Immunol ; 12: 589200, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841391

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a classical murine model for Multiple Sclerosis (MS), a human autoimmune disease characterized by Th1 and Th17 responses. Numerous studies have reported that C-reactive protein (CRP) mitigates EAE severity, but studies on the relevant pathologic mechanisms are insufficient. Our previous study found that CRP suppresses Th1 response directly by receptor binding on naïve T cells; however, we did not observe the effect on Th17 response at that time; thus it remains unclear whether CRP could regulate Th17 response. In this study, we verified the downregulation of Th17 response by a single-dose CRP injection in MOG-immunized EAE mice in vivo while the direct and indirect effects of CRP on Th17 response were differentiated by comparing its actions on isolated CD4+ T cells and splenocytes in vitro, respectively. Moreover, the immune cell composition was examined in the blood and CNS (Central Nervous System), and a blood (monocytes) to CNS (dendritic cells) infiltration pathway is established in the course of EAE development. The infiltrated monocyte derived DCs (moDCs) were proved to be the only candidate antigen presenting cells to execute CRP's function. Conversely, the decrease of Th17 responses caused by CRP disappeared in the above in vivo and in vitro studies with FcγR2B-/- mice, indicating that FcγR2B expressed on moDCs mediates CRP function. Furthermore, peripheral blood monocytes were isolated and induced to establish moDCs, which were used to demonstrate that the antigen presenting ability of moDCs was attenuated by CRP through FcγR2B, and then NF-κB and ERK signaling pathways were manifested to be involved in this regulation. Ultimately, we perfected and enriched the mechanism studies of CRP in EAE remission, so we are more convinced that CRP plays a key role in protecting against EAE development, which may be a potential therapeutic target for the treatment of MS in human.


Assuntos
Apresentação de Antígeno/imunologia , Proteína C-Reativa/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunomodulação , Células Th17/imunologia , Células Th17/metabolismo , Animais , Antígeno B7-2/metabolismo , Biomarcadores , Diferenciação Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Monócitos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptores de IgG/metabolismo , Transdução de Sinais , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
FASEB J ; 35(1): e21213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33368614

RESUMO

Preclinical studies have demonstrated that activation of the NOTCH pathway plays a key role in the pathogenesis of kidney damage. There is currently no information on the role of the Delta-like homologue 1 (DLK1), a NOTCH inhibitor, in the regulation of renal damage. Here, we investigated the contribution of DLK1 to experimental renal damage and the underlying molecular mechanisms. Using a Dlk1-null mouse model in the experimental renal damage of unilateral ureteral obstruction, we found activation of NOTCH, as shown by increased nuclear translocation of the NOTCH1 intracellular domain, and upregulation of Dlk2/hey-1 expression compared to wild-type (WT) littermates. NOTCH1 over-activation in Dlk1-null injured kidneys was associated with a higher inflammatory response, characterized by infiltration of inflammatory cells, mainly CD4/IL17A + lymphocytes, and activation of the Th17 immune response. Furthermore, pharmacological NOTCH blockade inhibited the transcription factors controlling Th17 differentiation and gene expression of the Th17 effector cytokine IL-17A and other related-inflammatory factors, linked to a diminution of inflammation in the injured kidneys. We propose that the non-canonical NOTCH ligand DLK1 acts as a NOTCH antagonist in renal injury regulating the Th17-mediated inflammatory response.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Deleção de Genes , Imunidade Celular , Nefropatias/imunologia , Rim/imunologia , Células Th17/imunologia , Animais , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Camundongos , Células Th17/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/imunologia , Obstrução Ureteral/patologia
15.
Environ Pollut ; 265(Pt B): 114094, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806433

RESUMO

Airborne particulate matter (PM) has become a serious health issue causing pulmonary diseases such as asthma. Due to the side effects and non-specificity of conventional drugs, there is a need to develop natural-product-based alternative treatments. Sargassum horneri is a brown alga shown to have anti-oxidant, anti-inflammatory, and anti-allergic effects. Thus, we sought to determine whether ethanol extract of Sargassum horneri (SHE) mitigates the effect of PM exposure on asthma development. To establish a mouse model of asthma, BALB/c mice were sensitized with ovalbumin (OVA, 10 µg) and challenged with PM (5 mg/m3) for 7 days consecutively. SHE (200, 400 mg/kg), Prednisone (5 mg/kg), or PBS was daily administrated orally before PM exposure. SHE mitigated PM exacerbated dendritic cell activation. More importantly, SHE restrained Th2 polarization by attenuating transcription factors GATA3 and STAT5, which further mitigated the expression of Th2 cytokines interleukin (IL)-4, IL-5, and IL-13 in the lung homogenates of PM-exacerbated asthmatic mice. SHE further attenuated PM-exacerbated eosinophil infiltration in the lung, trachea, and BALF. In addition, SHE markedly mitigated the activation of mast cells and the IgE level in serum. Concomitantly, SHE further restrained the Th17 cell response in PM-exposed allergic mice through attenuating expression of transcription factors RORγT, STAT3 and expression of relevant effector cytokines IL-17a. This resulted in mitigated neutrophil infiltration in the lung. Taken together, SHE significantly suppressed PM-exacerbated hypersecretion of mucus in asthmatic mice. These results suggest that SHE has therapeutic potential for treating PM-exacerbated allergic asthma through concomitantly inhibiting Th2/Th17 responses.


Assuntos
Asma , Sargassum , Animais , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado , Células Th17 , Células Th2
16.
Parasite Immunol ; 42(12): e12782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738163

RESUMO

Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/imunologia , Platelmintos/imunologia , Imunidade Adaptativa/genética , Animais , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Poecilia , RNA-Seq
17.
Microorganisms ; 8(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718009

RESUMO

Effective and safe vaccine adjuvants are needed to appropriately augment mucosal vaccine effects. Our previous study demonstrated that lipopolysaccharide (LPS) from Peyer's patch resident Alcaligenes stimulated dendritic cells to promote the production of mucosal immunity-enhancing cytokines (e.g., IL-6 and BAFF), thus enhancing antigen-specific immune responses (including IgA production and Th17 responses) without excessive inflammation. Here, we chemically synthesized Alcaligenes lipid A, the biologically active part of LPS, and examined its efficacy as a nasal vaccine adjuvant for the induction of protectively immunity against Streptococcus pneumoniae infection. Mice were nasally immunized with pneumococcal surface protein A (PspA) as a vaccine antigen for S. pneumoniae, together with Alcaligenes lipid A. Alcaligenes lipid A supported the generation of high levels of PspA-specific IgA and IgG responses through the augmentation of germinal center formation in the nasopharynx-associated lymphoid tissue and cervical lymph nodes (CLNs). Moreover, Alcaligenes lipid A promoted PspA-specific CD4+ Th17 responses in the CLNs and spleen. Furthermore, neutrophils were recruited to infection sites upon nasal infection and synchronized with the antigen-specific T and B cell responses, resulting in the protection against S. pneumoniae infection. Taken together, Alcaligenes lipid A could be applied to the prospective adjuvant to enhance nasal vaccine efficacy by means of augmenting both the innate and acquired arms of mucosal immunity against respiratory bacterial infection.

18.
Front Vet Sci ; 7: 340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637426

RESUMO

Foot-and-mouth disease virus (FMDV) causes persistent infection of nasopharyngeal epithelial cells in ~50% of infected ruminants. The mechanisms involved are not clear. This study provides a continued investigation of differentially expressed genes (DEG) identified in a previously published transcriptomic study analyzing micro-dissected epithelial samples from FMDV carriers and non-carriers. Pathway analysis of DEG indicated that immune cell trafficking, cell death and hematological system could be affected by the differential gene expression. Further examination of the DEG identified five downregulated (chemerin, CCL23, CXCL15, CXCL16, and CXCL17) and one upregulated (CCL2) chemokines in carriers compared to non-carriers. The differential expression could reduce the recruitment of neutrophils, antigen-experienced T cells and dendritic cells and increase the migration of macrophages and NK cells to the epithelia in carriers, which was supported by DEG expressed in these immune cells. Downregulated chemokine expression could be mainly due to the inhibition of canonical NFκB signaling based on DEG in the signaling pathways and transcription factor binding sites predicted from the proximal promoters. Additionally, upregulated CD69, IL33, and NID1 and downregulated CASP3, IL17RA, NCR3LG1, TP53BP1, TRAF3, and TRAF6 in carriers could inhibit the Th17 response, NK cell cytotoxicity and apoptosis. Based on our findings, we hypothesize that (1) under-expression of chemokines that recruit neutrophils, antigen-experienced T cells and dendritic cells, (2) blocking NK cell binding to target cells and (3) suppression of apoptosis induced by death receptor signaling, viral RNA, and cell-mediated cytotoxicity in the epithelia compromised virus clearance and allowed FMDV to persist. These hypothesized mechanisms provide novel information for further investigation of persistent FMDV infection.

19.
Int J Mol Sci ; 21(2)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968593

RESUMO

The Th17 immune response plays a key role in autoimmune diseases such as multiple sclerosis (MS) and inflammatory bowel disease (IBD). Expression of Th17-related genes in inflamed tissues has been reported in autoimmune diseases. However, values are frequently obtained using invasive methods. We aimed to identify biomarkers of MS in an accessible sample, such as blood, by quantifying the relative expression of 91 Th17-related genes in CD4+ T lymphocytes from patients with MS during a relapse or during a remitting phase. We also compared our findings with those of healthy controls. After confirmation in a validation cohort, expression of SMAD7 and S1PR1 mRNAs was decreased in remitting disease (-2.3-fold and -1.3-fold, respectively) and relapsing disease (-2.2-fold and -1.3-fold, respectively). No differential expression was observed for other SMAD7-related genes, namely, SMAD2, SMAD3, and SMAD4. Under-regulation of SMAD7 and S1PR1 was also observed in another autoimmune disease, Crohn's disease (CD) (-4.6-fold, -1.6-fold, respectively), suggesting the presence of common markers for autoimmune diseases. In addition, expression of TNF, SMAD2, SMAD3, and SMAD4 were also decreased in CD (-2.2-fold, -1.4-fold, -1.6-fold, and -1.6-fold, respectively). Our study suggests that expression of SMAD7 and S1PR1 mRNA in blood samples are markers for MS and CD, and TNF, SMAD2, SMAD3, and SMAD4 for CD. These genes could prove useful as markers of autoimmune diseases, thus obviating the need for invasive methods.


Assuntos
Biomarcadores/análise , Doença de Crohn/imunologia , Esclerose Múltipla/imunologia , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/genética , Linfócitos T CD4-Positivos , Humanos , Proteína Smad2/genética , Proteína Smad3/genética , Proteína Smad4/genética , Proteína Smad7/genética , Células Th17/imunologia , Fator de Crescimento Transformador beta/genética
20.
BMC Vet Res ; 15(1): 397, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31694631

RESUMO

BACKGROUND: Mild equine asthma is a common inflammatory airway disease of the horse. The primary treatment of mild equine asthma is corticosteroids. The purpose of this study was to investigate the effects of injected dexamethasone on relative IL-1ß, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p35, IL-17, IL-23, IFN-γ, Eotaxin-2 and TNF-α mRNA expression in bronchoalveolar lavage (BAL) fluid in healthy Thoroughbred horses (n = 6), and those with mild equine asthma (n = 7). RESULTS: Horses with mild equine asthma had a significantly greater bronchoalveolar lavage mast cell percentage than healthy horses both before and after treatment. Mild equine asthma was associated with a 4.95-fold up-regulation of IL-17 (p = 0.026) and a 2.54-fold down-regulation of IL-10 (p = 0.049) compared to healthy horses. TNF-α was down-regulated in response to dexamethasone treatment in both healthy horses (3.03-fold, p = 0.023) and those with mild equine asthma (1.75-fold, p = 0.023). IL-5 was also down-regulated in horses with mild asthma (2.17-fold, p = 0.048). CONCLUSIONS: Horses with mild equine asthma have a lower concentration of IL-10 in BAL fluid than healthy controls which concurs with human asthmatics. The marked up-regulation of IL-17 in horses with mild asthma suggests these horses had a true tendency of "allergic" airway inflammation in response to environmental allergens. Dexamethasone administration exerted anti-inflammatory effects associated with down-regulation of TNF-α in all horses, and decreased levels of IL-5 mRNA expression in horses with mild equine asthma. The inhibition of the Th-2 response, without any alterations to the airway cytology, indicates that maintained exposure to environmental allergens perpetuates airway inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Asma/veterinária , Líquido da Lavagem Broncoalveolar/química , Citocinas/metabolismo , Dexametasona/farmacologia , Doenças dos Cavalos/tratamento farmacológico , Animais , Asma/tratamento farmacológico , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/genética , Cavalos , Masculino , Mastócitos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA