Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Therm Biol ; 125: 103978, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39368169

RESUMO

The application of thermal treatments could serve as a biosecurity tool to avert snake introduction, which often leads to irreversible ecological impacts. Here, we tested the applicability of conductive heating and thermal fumigation to prevent the spread of the California kingsnake (Lampropeltis californiae), a damaging species established on the island of Gran Canaria, likely to reach other vulnerable regions, and included among the most concerning invasive species of the European Union. We exposed 24 individuals to a thermal gradient to determine species selected temperatures, range of preferred temperatures and voluntary thermal maximum and used other 24 individuals to analyse their response to conductive heating, thermal fumigation and control (no heat) treatments. Lampropeltis californiae selected temperatures of 27.80 ± 1.05 °C (ranging 26.86 °C ± 1.21 °C to 28.68 °C ± 1.25 °C) and a voluntary thermal maximum of 32.50 ± 3.69 °C. Conductive heating and thermal fumigation performed equally well, inducing the exit of 83.33% and 91.67% of all individuals after 14.36 ± 9.25 min and 11.13 ± 8.60 min of exposition, and at a body temperature of 35.66 ± 3.53 °C and 35.57 ± 2.41 °C, respectively. Control treatments produced the exit of 29.17% of all individuals, which came out of the box in 24.80 ± 8.83 min and at a body temperature of 28.60 ± 1.38 °C. Thermal treatments could serve as an effective tool to prevent the inadvertent transportation of L. californiae and other invasive snakes threatening numerous regions around the globe.

2.
Foods ; 13(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272510

RESUMO

Legume flours are an increasingly popular food ingredient. Thermal treatments applied prior to milling legumes and granulometry can modify flour properties, altering sensory, digestibility and functional attributes. Raw and treated (soaked and cooked) lentil flours of different granulometry were produced. The applied treatment resulted in an increase in fiber content (25.4 vs. 27.6% for raw and treated lentil flour, respectively) and water absorption capacity. It also led to a decrease in ash content (3.3 vs. 1.8% for raw and treated, respectively) and a darker flour. Treated lentil flour was mainly composed of fractions of high granulometry, which could be beneficial for products where a lower glycemic index is sought, as they demonstrated higher fiber and lower carbohydrate content than the finer fractions. Treated flour may be used as an ingredient in the development of raw products, including beverages and desserts, due to its reduced anti-nutritional compounds' content and enhanced organoleptic aspects. The obtained results allow an in-depth characterization of raw and treated lentils flour with different particle sizes to consider a formal and complete standardization of these flours and for understanding their utility and specific food applications.

3.
ACS Appl Mater Interfaces ; 16(35): 46527-46537, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39174345

RESUMO

A promising approach for implementing biomimetic systems relies on organic electronic devices designed to emulate neural synapses. However, organic artificial synapses face challenges in achieving high yield and robustness, rendering them difficult to use in practical applications. In this work, a high-yield and highly stable bulk heterojunction (BHJ) synaptic device composed of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was fabricated via a simple solution process followed by thermal treatments. The crystallinity of P3HT and the precipitation of PCBM in BHJ films can be controlled by the thermal annealing temperatures. At 80 °C, P3HT reaches its highest crystallinity, while PCBM remains uniformly distributed. This thermal treatment significantly contributes to the fabrication of devices characterized by a high yield rate, reaching 98.43%. Additionally, this device remained operational even after being immersed in deionized water, ethanol, and seawater for 100 h. More importantly, it exhibited high elasticity over a wide temperature range from -90 to 310 °C. Finally, this device was utilized to construct a biomimetic vehicle with autonomous memory learning capabilities. After repeated training, the avoidance time was optimized by 31.4%. The robust P3HT:PCBM artificial synapses hold great promise for advancing the development of biomimetic electronic products in extreme environments.

4.
Heliyon ; 10(15): e35166, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170574

RESUMO

The study aimed to evaluate the chemical composition, antioxidant activity and techno-functionality of brewers' spent grain (BSG) treated with two-steps treatment involving 5, 15, and 25 min bath-ultrasonication (USB) continued with autoclave (AH) at 90, 110, and 130 °C and/or water-bath (CWH) at 80, 90, and 100 °C. The two-steps treatments slightly affected the water- and oil-holding capacity and extractable fat content. Most of the two-steps treatments increased the amount of flavan-3-ols and phenolic acids, up to 4 times higher compared to its control. The two-steps treatment involving CWH had no significant (p > 0.05) impact on fat content, antioxidants and techo-functionality of BSG. Up to 15 min USB increased the poly-unsaturated fatty acids and lowered the amount of saturated fatty acids. In conclusion, the two-steps treatment consists of USB (up to 15 min) continued with AH and CWH increased the amount of nutritional-related chemical composition such as UFA and phenolic acids as well as antioxidant activity of BSG.

5.
Biosensors (Basel) ; 14(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39194600

RESUMO

Noninvasive in situ monitoring of viscoelastic characteristics of corneal tissue at elevated temperatures is pivotal for mechanical property-informed refractive surgery techniques, including thermokeratoplasty and photorefractive keratectomy, requiring precise thermal modifications of the corneal structure during these surgical procedures. This study harnesses Brillouin light scattering spectroscopy as a biosensing platform to noninvasively probe the viscoelastic properties of ovine corneas across a temperature range of 25-64 °C. By submerging the tissue samples in silicone oil, consistent hydration and immiscibility are maintained, allowing for their accurate sensing of temperature-dependent mechanical behaviors. We identify significant phase transitions in the corneal tissue, particularly beyond 40 °C, likely due to collagen unfolding, marking the beginning of thermal destabilization. A subsequent transition, observed beyond 60 °C, correlates with collagen denaturation. These phase transformations highlight the cornea's sensitivity to both physiologically reversible and irreversible viscoelastic changes induced by mild to high temperatures. Our findings underscore the potential of the Brillouin biosensing technique for real-time diagnostics of corneal biomechanics during refractive surgeries to attain optimized therapeutic outcomes.


Assuntos
Técnicas Biossensoriais , Córnea , Elasticidade , Animais , Ovinos , Viscosidade , Transição de Fase , Temperatura
6.
Front Public Health ; 12: 1339689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050610

RESUMO

Background: In modern society, achieving high-quality sleep is increasingly challenging. We conducted a study to explore the potential benefits of daytime physical activity and balneotherapy, including mud application and thermal-water bathing, on sleep quality. Methods: To assess daytime physical activity and sleep parameters, we actigraphically monitored 127 healthy participants (34.6% male, average age 64.61 ± 0.89 years) during a one-week stay at a spa resort, where they received mud application and thermal-water bathings. Results: Participants were divided into three groups based on the timing of mud application. Those receiving mud application before 8:30 a.m. tended to have shorter sleep durations compared to those with later application, especially if it occurred before 7:45 a.m. However, mud application did not significantly affect sleep quality. Three-way ANCOVA revealed a significant effect of daytime physical activity on delta Sleep Efficiency, but post-hoc tests were insignificant. Furthermore, analyzing the duration of daily thermal-water bathings, individuals bathing for over 75 min per day experienced a noteworthy improvement in sleep quality, particularly in terms of delta Sleep Efficiency (2.15 ± 0.9% vs. -0.34 ± 0.31%, p = 0.007). Conclusion: Our findings suggest that extended thermal-water bathing may enhance objective aspects of sleep quality. Since balneotherapy is mainly prescribed for individuals with musculoskeletal pathologies or psychological disorders, these findings may encourage doctors to recommend bathing in thermal water also to healthy subjects. Future researchers need to investigate the role of daytime physical activity in depth.


Assuntos
Balneologia , Exercício Físico , Estâncias para Tratamento de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Qualidade do Sono , Actigrafia , Banhos , Idoso , Sono/fisiologia
7.
Water Res ; 257: 121746, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733966

RESUMO

Sewage sludge is promising for the recovery and utilisation of nutrient components, but its complex nature hinders the release of these components. The combination of pH and thermal modifications shows promise for the release of nutrient components from sludge. However, comprehensive studies on the full spectrum of pH levels and corresponding mechanisms of pH-varying thermal modification are lacking. In this study, the main nutrient components, physicochemical properties, molecular structure, and noncovalent interactions of sludge were comprehensively investigated through pH-varying thermal modification (within a pH range of 2.0 to 12.0 under the same thermal condition). The experimental results showed that the release of main organics, particularly nitrogen (N)-containing organics, was well-fitted, with a tick-like function (R2: 0.74-0.96). The thermal protons exhibited a notable accumulative mutagenic effect on the N-containing organics release, while the thermal hydroxyl ions had a more direct effect, as revealed by the changes in multivalent metals and molecular structures with the protonation-deprotonation of carboxyl groups. The driving force for the release of N-containing organics was identified as the fluctuation of electrostatic interactions at the solid-liquid interface of the sludge. However, the release of phosphorus (P)-containing substances exhibited a contrasting response to that of N-containing substances with varying pH, likely because the reaction sites of thermal protons and thermal hydroxyl ions for P-containing substances were different. Moreover, high concentrations of thermal protons and hydroxyl ions collapsed the Lifshitz-van der Waals interactions of sludge, resulting in a decrease in viscoelasticity and binding strength. These propositions were further confirmed through statistical analyses of the main indicators of the main nutrient components, physicochemical properties, and noncovalent interactions of sludge. These findings can provide a basis for optimising characteristic-specific methods to recovery nutrient components (N/P) from sludge.


Assuntos
Nitrogênio , Fósforo , Esgotos , Esgotos/química , Fósforo/química , Nitrogênio/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
8.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339684

RESUMO

This review delves into the critical role of automation and sensor technologies in optimizing parameters for thermal treatments within electrical power generation. The demand for efficient and sustainable power generation has led to a significant reliance on thermal treatments in power plants. However, ensuring precise control over these treatments remains challenging, necessitating the integration of advanced automation and sensor systems. This paper evaluates the pivotal aspects of automation, emphasizing its capacity to streamline operations, enhance safety, and optimize energy efficiency in thermal treatment processes. Additionally, it highlights the indispensable role of sensors in monitoring and regulating crucial parameters, such as temperature, pressure, and flow rates. These sensors enable real-time data acquisition, facilitating immediate adjustments to maintain optimal operating conditions and prevent system failures. It explores the recent technological advancements, including machine learning algorithms and IoT integration, which have revolutionized automation and sensor capabilities in thermal treatment control. Incorporating these innovations has significantly improved the precision and adaptability of control systems, resulting in heightened performance and reduced environmental impact. This review underscores the imperative nature of automation and sensor technologies in thermal treatments for electrical power generation, emphasizing their pivotal role in enhancing operational efficiency, ensuring reliability, and advancing sustainability in power generation processes.

9.
Food Res Int ; 176: 113803, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163684

RESUMO

To extend shelf life of fermented spicy Chinese cabbage sauce at room temperature, the effects of electron beam irradiation (EBI), high pressure processing (HPP), pasteurization (PT) and autoclave sterilization (AS) treatments on the colony counts of Lactobacillus plantarum, phytochemicals, antioxidant activities and volatile compounds were investigated. Results showed that thermal and non-thermal treatments could significantly decrease the colony counts of Lactobacillus plantarum, in which EBI and AS treatments inactivated Lactobacillus plantarum thoroughly. EBI and HPP treatments were superior to PT and AS treatments in terms of volatile compounds, bioactive compounds and antioxidant activities. The total contents of volatile compounds in sauces treated by EBI and HPP were significantly increased by 43.92%-61.87% and 71.53%-84.46%, respectively, and the new formed substance 2,3-butanedione endowed sauces with sweet and creamy aroma. In addition, HPP treatment improved the extractable contents of total phenolics and carotenoids, retained capsicum red pigment content, and significantly enhanced antioxidant capacities of sauces. Sauce treated by HPP at 200 MPa exhibited the highest total carotenoid content, DPPH radical scavenging activity and FRAP, increasing by 9.27%, 2.24% and 16.13%, respectively, compared with CK. EBI treatment exhibited higher total phenolic content and FRAP, which positively depended on the dose. Therefore, HPP and EBI treatments were suggested as potential technologies to improve shelf-life stability and volatile compounds of fermented spicy Chinese cabbage sauce.


Assuntos
Brassica , Lactobacillus plantarum , Antioxidantes/análise , Carotenoides/análise , Pasteurização , Fenóis/química , Compostos Fitoquímicos
10.
Small ; 20(11): e2306709, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37890186

RESUMO

Since the discovery of Hofmann clathrates of inorganic cyanide bridged coordination polymers (Hofmann-type CN-CPs), extensive research is done to understand their behavior during spin transitions caused by guest molecules or external stimuli. Lately, research on their nanoscale architectures for sensors and switching devices is of interest. Their potential is reported for producing advanced functional inorganic materials in two-dimensional (2D) morphology using a scalable solid-state thermal treatment method. For instance, but not restricted to, alloys, carbides, chalcogenides, oxides, etc. Simultaneously, their in situ crystallization at graphene oxide (GO) nanosheet surfaces, followed by a subsequent self-assembly to build layered lamellar structures, is reported providing hybrid materials with a variety of uses. Hence, an overview of the most recent developments is presented here in the synthesis of nanoscale structures, including thin films and powders, using Hofmann-type CN-CPs. Also thoroughly demonstrated are the most recent synthetic ideas with the modest control over the size and shape of nanoscale particles. Additionally, in order to create new functional hybrid materials for electrical and energy applications, their thermal decomposition in various environments and hybridization with GO and other guest molecules is examined. This review article also conveyed their spin transition, astounding innovative versatile adhesives, and structure features.

11.
Chemosphere ; 344: 140389, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832887

RESUMO

Integrated recycling of solid waste containing heavy metals is a critical environmental challenge. In this study, a green solution to reduce heavy metal leaching from solid waste is demonstrated by combining contaminated soil, industrial sludge and lithium slag in pairs to produce lightweight aggregates (LWAs). The physical properties and heavy metal leaching behavior of LWA samples were systematically investigated and characterized. The results showed that industrial sludge reduced the density and water absorption of LWA, while the high content of lithium slag was detrimental to the physical properties. LWA containing 80% contaminated soil and 20% lithium slag had the lowest particle density of 1.47 g/cm3 due to the hollow structure caused by the low viscosity and violent generation of SO2. LWAs with lithium slag leached excessive Cu and Cr relatively, while heavy metals were immobilized well in LWAs with contaminated soil and industrial sludge as the main components. Because the flux components of industrial sludge could enhance the encapsulation of heavy metals by glass phase. In addition, the co-immobilization of multiple heavy metals was observed in the spinel phase. This study provides an efficient and safe method for the synergistic recycling of solid waste.


Assuntos
Metais Pesados , Resíduos Sólidos , Esgotos/química , Lítio , Metais Pesados/análise , Solo
12.
Food Res Int ; 173(Pt 2): 113417, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803755

RESUMO

Alpinia zerumbet, a species of the Zingiberaceae family, is a common plant in tropical and subtropical areas used in traditional medicine to treat various diseases and also included as food in the traditional Okinawan diet (Japan). The leaves and rhizomes of this plant are used as spice and flavoring in foods such as rice, meats, and pasta. Studies of the chemical and nutritional characteristics of fresh leaves and of leaves submitted to thermal treatments such as boiling and steaming are lacking. In the current study, the leaves of A. zerumbet were subjected to boiling or steaming for 10, 20, and 30 min as part of the thermal treatments. The study also provides noteworthy results regarding the proximate composition, physical-chemical data, minerals, phenolic compounds, antioxidant activity, volatile compounds, and LC-MS chromatographic profiles of the extracts produced with fresh leaves and with thermal treatments. The carbohydrate content of A. zerumbet leaves improved during the thermal treatments, showing an increase after steaming (18.86 to 19.79%) and boiling for 30 min (25.85%). After boiling treatment for 20 min, a significant amount of protein was found (6.79%) and all heat treatments resulted in low content of lipid (<1.0%). The boiling treatment for 10 min (BT10) resulted in the highest concentrations of total phenolic components (TPC), 339.5 mg/g, and flavonoids (TF), 54.6 mg/g, among the three thermal treatments (BT10, BT20 and BT30). The results of the steaming treatments (ST 10, 20, and 30 min) differed, with ST20 leading to higher TPC (150.4 mg/g) and TF (65.0 mg/g). The quantity of total phenolics and flavonoids, as well as the antioxidant activity, were significantly affected by the cooking method and the length of time of sample exposure to heat. The samples boiled for 30 and 10 min had higher concentrations of antioxidant activity as measured by the phosphomolybdenum and DPPH methods (151.5 mg/g of extract and 101.5 µg/mL, respectively). Thirty-eight volatile organic compounds (VOCs) were identified by chromatographic analysis of fresh and thermally treated leaves of A. zerumbet. Terpenoids were the predominant class of volatile compounds in the fresh leaves and in all thermal treatments. p-Cymene, 1,8-cineole, 4-terpineol, linalool, α-copaene and ß-bisabolene have the greatest impact on overall aroma perception, with odor activity values (OAV) greater than five. Among the phenolic compounds identified by LC-HRMS in the extracts of fresh and thermally treated leaves were proanthocyanidins, (+) catechin, (-) epicatechin, quercetin-3-O-glucoronide, isorhamnetin-3-O-glucoronide, kaempferol-3-O-rutinoside, pinocembrin, alpinetin, pinostrobin, and other compounds. The present results support the traditional use of this plant as a potential food with properties that certainly contribute to health improvement.


Assuntos
Alpinia , Antioxidantes , Antioxidantes/análise , Alpinia/química , Alimento Funcional/análise , Fenóis/análise , Flavonoides/análise
13.
J Orthop Surg (Hong Kong) ; 31(3): 10225536231202157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37726111

RESUMO

This systematic review evaluates the effects of heat treatments in de novo, residual and recurrent giant cell tumors of bone (GCTB). Studies were eligible for inclusion if one of the following treatments was administered: radiofrequency ablation (RFA), microwave ablation, argon cauterization, electrocauterization and hot liquid treatment. The primary outcome was recurrence. Secondary outcomes were complications, pain, function, and quality of life. Recurrence rates for microwave ablation as an adjuvant to intralesional curettage were 0%, 4% and 10% (3 retrospective single-group studies); for argon cauterization 4%, 8% and 26% (3 cohort studies); electrocauterization 0% to 33% (8 cohort studies); and hot liquid 9.5% and 24% (2 cohort studies). Follow-up was generally ≥24 months. Data on pain, function and quality of life were scarce. Complications included infection and secondary osteoarthritis. Current evidence does not demonstrate or exclude an effect of heat treatments on recurrence in GCTB. Further research should objectify if (subgroups of) patients benefit from these treatments.


Assuntos
Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Humanos , Estudos Retrospectivos , Argônio , Temperatura Alta , Qualidade de Vida , Tumor de Células Gigantes do Osso/cirurgia , Tumor de Células Gigantes do Osso/patologia , Curetagem/efeitos adversos , Dor/etiologia , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/patologia , Recidiva Local de Neoplasia/cirurgia
14.
Materials (Basel) ; 16(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444965

RESUMO

Bioactive glasses (BGs) are promising materials for bone regeneration due to their ability to bond with living bone tissue. However, thermal stability and mechanical properties of BGs need improvement for better clinical performance. In this paper, we present an overview of the influence of different ions on the sintering and crystallization of BGs. Specifically, this review focuses on the impact of thermal treatments on the crystallization of 45S5 and other significant BG compositions. Potential applications of these thermally treated BGs, such as scaffolds, BG-based composites, and thermally sprayed coatings, are explored. Moreover, the substitution of ions has been investigated as a method to enhance the thermal properties of BGs. Notably, zinc, potassium, and strontium have been studied extensively and have demonstrated promising effects on both the thermal and the mechanical properties of BGs. However, it is important to note that research on ion inclusion in BGs is still in its early stages, and further investigation is necessary to fully comprehend the effects of different ions on sintering and crystallization. Therefore, future studies should focus on optimizing the ion substitution method to improve the thermal, mechanical, and even biological properties of BGs, thereby enhancing their potential for various biomedical applications.

15.
Food Chem X ; 18: 100743, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397213

RESUMO

This study analyzed the effects of thermal processing on volatiles and fatty acids in sweet corn. There were 27 volatiles measured in fresh samples, and 33, 21, and 19 volatiles identified in the steaming, blanching, and roasting groups, respectively. Relative odor activity values (ROAVs) showed that characteristic aroma-active volatiles of sweet corn after thermal treatments included: (E)-2-nonenal, 1-octen-3-ol, beta-myrcene, dimethyl trisulfide, 1-(4,5-dihydro-2-thiazolyl)-ethanone, and d-limonene. Thermal treatments significantly increased the unsaturated fatty acids (oleic acid and linolenic acid) of sweet corn by 110 to 183% compared to fresh samples. Meanwhile, many characteristic volatiles were found that derived from the oxidative cleavage of fatty acids. The sweet corn aroma obtained by steaming for 5 min was considered the closest to fresh corn. Our research provided insight into aroma composition of different thermally processed sweet corn and laid the foundation for further exploring the sources of aroma compounds in thermally processed sweet corn.

16.
Food Chem X ; 17: 100584, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845502

RESUMO

This study investigated the effects of different cooking methods on non-volatile flavor (free amino acids, 5'-nucleotides, and organic acids, etc.) of Coregonus peled meat. The volatile flavor characteristics were also analyzed by electric nose and gas chromatography-ion migration spectrometry (GC-IMS). The results indicated that the content of flavor substances in C. peled meat varied significantly. The electronic tongue results indicated that the richness and umami aftertaste of roasting were significantly greater. The content of sweet free amino acids, 5'-nucleotides, and organic acids was also higher in roasting group. Electronic nose principal component analysis can distinguish C. peled meat cooked (the first two components accounted for 98.50% and 0.97%, respectively). A total of 36 volatile flavor compounds were identified among different groups, including 16 aldehydes, 7 olefine aldehydes, 6 alcohols, 4 ketones, and 3 furans. In general, roasting was recommended and gave more flavor substances in C. peled meat.

17.
Front Nutr ; 10: 1325863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38455872

RESUMO

Human Breast Milk (HBM) is widely acknowledged as the best nutritional source for neonates. Data indicates that, in 2019, 83.2% of infants in the United States received breast milk at birth, slightly reducing to 78.6% at 1 month. Despite these encouraging early figures, exclusive breastfeeding rates sharply declined, dropping to 24.9% by 6 months. This decline is particularly pronounced when direct breastfeeding is challenging, such as in Neonatal Intensive Care Units (NICU) and for working mothers. Given this, it is vital to explore alternative breast milk preservation methods. Technologies like Holder Pasteurization (HoP), High-Temperature Short-Time Pasteurization (HTST), High-Pressure Processing (HPP), UV radiation (UV), and Electric Pulses (PEF) have been introduced to conserve HBM. This review aims to enhance the understanding of preservation techniques for HBM, supporting the practice of extended exclusive breastfeeding. It explicitly addresses microbial concerns, focusing on critical pathogens like Staphylococcus aureus, Enterococcus, Escherichia coli, Listeria monocytogenes, and Cytomegalovirus, and explores how various preservation methods can mitigate these risks. Additionally, the review highlights the importance of retaining the functional elements of HBM, particularly its immunological components such as antibodies and enzymes like lysozyme and Bile Salt Stimulated Lipase (BSSL). The goal is to provide a comprehensive overview of the current state of HBM treatment, critically assess existing practices, identify areas needing improvement, and advocate for extended exclusive breastfeeding due to its vital role in ensuring optimal nutrition and overall health in infants.

19.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193875

RESUMO

Heating is a vital step in the gelation of surimi. Conventional water bath heating (WB) has the advantages of easy operation and low equipment requirements. However, the slow heat penetration during WB may lead to poor gel formation or gels prone to deterioration, especially with one-step heating. The two-step WB is time-consuming, and a large amount of water used tends to cause environmental problems. This review focuses on key factors affecting the quality of surimi gels in various heating technologies, such as surimi protein structure, chemical forces, or the activity of endogenous enzymes. In addition, the relationships between these factors and the gel performance of surimi under various heating modes are discussed by analyzing the heating temperature and heating rate. Compared with WB, the gel performance can be improved by controlling the heating conditions of microwave heating and ohmic heating, which are mainly achieved by changing the molecular structure of myofibrillar proteins or the activity of endogenous enzymes in surimi. Nevertheless, the novel thermal technologies still face several limitations and further research is needed to realize large-scale industrial production. This review provides ideas and directions for developing heat-induced surimi products with excellent gel properties.

20.
Food Res Int ; 160: 111702, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076453

RESUMO

The way of cooking vegetables could differently affect the phenolic profiles of foods and their impact on human colon microbiota. In this work, we investigated the stability and bioaccessibility as well as the impact and fate of dark purple eggplant (DPE) phenolic compounds in the gut microbiota after grilling or frying in comparison to the raw one. After cooking, DPE underwent a gastro-intestinal digestion along with a proximal colon fermentation using the short-term batch model MICODE (multi-unit in vitro colon gut model). During the process, the phenolic compounds profiles (through high-resolution mass spectrometry) and microbiomics (qPCR of 14 core taxa) analyses were performed. Results showed that thermal treatments increased the amount of extractable phenolic compounds as well as their bioaccessibility. The highest gastro-intestinal release was observed in fried DPE (2468.46 ± 13.64 µmol/100 g), followed by grilled DPE (1007. 96 ± 12.84 µmol/100 g) and raw DPE (900.93 ± 10.56 µmol/100 g). Mass spectrometry analysis confirmed that colonic bacteria were able to metabolize DPE phenolic compounds mainly to 3-(3'-hydroxyphenyl)propanoic acid. Furthermore, results indicated that frying was better than grilling in terms of fostering more the growth of beneficial bacterial taxa and limiting that of opportunistic taxa. For example, fried DPE determined an increase in abundance of Bifidobacteriaceae Lactobacillales of 2.66 and 3.80 times. This work is one of the first exploring how cooking methods can affect the phenolic composition of DPE and differently impact on the colon microbiota tuning and modifying the food functionalities.


Assuntos
Microbioma Gastrointestinal , Solanum melongena , Bactérias/metabolismo , Colo/metabolismo , Digestão , Fermentação , Humanos , Fenóis/análise , Solanum melongena/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA