Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 773
Filtrar
1.
Insect Biochem Mol Biol ; 174: 104192, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401552

RESUMO

Climate change facilitates the rapid invasion of agricultural pests, threatening global food security. The fall armyworm Spodoptera frugiperda is a highly polyphagous migratory pest tolerant to high temperatures, allowing its proliferation in harsh thermal environments. We aimed to demonstrate mechanisms of its high-temperature tolerance, particularly transcriptional and metabolic regulation, which are poorly understood. To achieve the aim, we examined the impact and mechanism of heat events on S. frugiperda by using multiple approaches: ecological measurements, transcriptomics, metabolomics, RNAi, and CRISPR/Cas9 technology. We observed that several physiological indices (larval survival rate, larval period, pupation rate, pupal weight, eclosion rate, and average fecundity) decreased as the temperature increased, with the 32 °C treatment displaying a significant difference from the control group at 26 °C. Significantly upregulated expression of genes encoding endochitinase and chitin deacetylase was observed in the chitin-binding, extracellular region, and carbohydrate metabolic process GO terms of hemolymph, fat body, and brain, exhibiting a tissue-specific pattern. Significantly enriched pathways (e.g., cutin, suberin, and wax biosynthesis; oxidative phosphorylation and cofactor biosynthesis; diverse amino acid biosynthesis and degradation; carbon metabolism; and energy metabolism), all of which are essential for S. frugiperda larvae to tolerate temperature, were found in metabolites that were expressed differently. Successful RNA interference targeting of the three chitin-related genes reduced gene expression levels and larval survival rate. Knockout of the endochitinase gene by using the CRISPR/Cas9 system significantly reduced the relative gene expression and increased sensitivity to high-temperature exposure. On the basis of our findings, theoretical foundations for understanding the high-temperature tolerance of S. frugiperda populations and latent genetic control strategies were established.

2.
Heliyon ; 10(19): e38623, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39397944

RESUMO

Elevated atmospheric heat is considered as one of the bottlenecks for global wheat production. Screening potential wheat genotypes against heat stress and selecting some suitable indicators to assist in understanding thermotolerance could be crucial for sustaining wheat cultivation. Accordingly, 80 diverse bread wheat genotypes were evaluated in controlled lab condition by imposing a week-long heat stress (35/25 °C D/N) at the seedling stage. The response of heat stress was evaluated using multivariate analysis techniques on 20 morpho-physiological traits. Results showed significant variations in the studied traits due to the imposition of heat stress. Eleven seedling traits that contributed significantly to the genotypic variability were identified using principal component analysis (PCA). A substantial correlation between most of the selected seedling attributes was observed. Hierarchical cluster analysis identified three distinct clusters among the tested wheat genotypes. Cluster 1, consisting of 33 genotypes, exhibited the highest tolerance to heat stress, followed by Cluster 2 (18 genotypes) with moderate tolerance and Cluster 3 (29 genotypes) showing susceptibility. Linear discriminant analysis (LDA) approved that nearly 93 % of the wheat genotypes were appropriately ascribed to each cluster. The squared distance analysis confirmed the distinct nature of the clusters. Using multi-trait genotype-ideotype distance index (MGIDI), all 12 identified tolerant genotypes (BG-30, BD-468, BG-24, BD-9908, BG-32, BD-476, BD-594, BD-553, BD-488, BG-33, BD-495, and AS-10627) originated from Cluster 1. Selection gain in MGIDI analysis, broad-sense heritability, and multiple linear regression analysis together identified shoot and root dry and fresh weights, chlorophyll contents (a and total), shoot tissue water content, root-shoot dry weight ratio, and efficiency of photosystem II (PS II) as the most vital discriminatory factors explaining heat stress tolerance of 80 wheat genotypes. The identified genotypes with superior thermotolerance would offer resourceful genetic tools for breeders to improve wheat yield in warmer regions. The traits found to have greater contribution in explaining heat stress tolerance will be equally important in prioritizing future research endeavors.

3.
J Plant Physiol ; 303: 154362, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39395220

RESUMO

Methylglyoxal (MG) and calcium ion (Ca2+) can increase multiple-stress tolerance including plant thermotolerance. However, whether crosstalk of MG and Ca2+ exists in the formation of maize thermotolerance and underlying mechanism still remain elusive. In this paper, maize seedlings were irrigated with MG and calcium chloride alone or in combination, and then exposed to heat stress (HS). The results manifested that, compared with the survival percentage (SP, 45.3%) of the control seedlings, the SP of MG and Ca2+ alone or in combination was increased to 72.4%, 74.2%, and 83.4% under HS conditions, indicating that Ca2+ and MG alone or in combination could upraise seedling thermotolerance. Also, the MG-upraised SP was separately weakened to 42.2%, 40.3%, 52.1%, and 39.4% by Ca2+ chelator (ethylene glycol tetraacetic acid, EGTA), plasma membrane Ca2+ channel blocker (lanthanum chloride, LaCl3), intracellular Ca2+ channel blocker (neomycin, NEC), and calmodulin (CaM) antagonist (trifluoperazine, TFP). However, significant effect of MG scavengers N-acetylcysteine (NAC) and aminoguanidine (AG) on Ca2+-induced thermotolerance was not observed. Similarly, an endogenous Ca2+ level in seedlings was increased by exogenous MG under non-HS and HS conditions, while exogenous Ca2+ had no significant effect on endogenous MG. These data implied that Ca2+ signaling, at least partly, mediated MG-upraised thermotolerance in maize seedlings. Moreover, the activity and gene expression of glyoxalase system (glyoxalase I, glyoxalase II, and glyoxalase III) and non-glyoxalase system (MG reductase, aldehyde reductase, aldo-keto reductase, and lactate dehydrogenase) were up-regulated to a certain extent by Ca2+ and MG alone in seedlings under non-HS and HS conditions. The up-regulated MG-scavenging system by MG was enhanced by Ca2+, while impaired by EGTA, LaCl3, NEC, or TFP. These data suggest that the crosstalk of MG and Ca2+ signaling in maize thermotolerance through MG-scavenging system. These findings provided a theoretical basis for breeding climate-resilient maize crop and developing smart agriculture.

4.
J Hered ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401185

RESUMO

This study evaluated the effectiveness of genetic introgression of the SLICK1 allele derived from Senepol cattle into the Holstein breed to enhance thermotolerance. The SLICK1 allele, located in PRLR gene, confers a short and sleek coat that is inherited as a simple dominant phenotype. Approximately 40 years ago, the University of Florida initiated efforts to introgress this allele into the Holstein population. Here we tracked the introgression of the SLICK1 allele using a medium-density genotyping array and a reference population of both breeds (50 Holstein, 46 Senepol). Among the 31 SLICK1+ Holsteins, there was 15.25% ± 11.11% (mean ± SD) Senepol ancestry on BTA20. Holsteins at the University of Florida descended from slick matings that did not inherit the SLICK1 allele (n=9) exhibited no Senepol ancestry. A secondary introgression of Senepol genetics in SLICK1+ animals was found on BTA4, spanning 54 markers and 15 genes, with 26.67% Senepol ancestry. This region, previously linked to heat stress adaptation, suggests that the introgression extends beyond the SLICK1 allele to incorporate additional beneficial genetics for thermal stress adaptation. These findings indicate that deliberate introgression of the SLICK1 allele enhances specific traits and potentially introduces other adaptive genetic variations. The study demonstrates the successful use of genetic interventions to improve livestock resilience against environmental challenges without significantly disrupting the recipient breed's genetic structure. The introgression of the SLICK1 allele serves as a model for breeding programs aimed at optimizing animal welfare and productivity in the face of global climate change while maintaining breed integrity.

5.
Antioxidants (Basel) ; 13(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39334787

RESUMO

The herbaceous peony (Paeonia lactiflora Pall.) plant is world-renowned for its ornamental, medicinal, edible, and oil values. As global warming intensifies, its growth and development are often affected by high-temperature stress, especially in low-latitude regions. Superoxide dismutase (SOD) is an important enzyme in the plant antioxidant systems and plays vital roles in stress response by maintaining the dynamic balance of reactive oxygen species (ROS) concentrations. To reveal the members of then SOD gene family and their potential roles under high-temperature stress, we performed a comprehensive identification of the SOD gene family in the low-latitude cultivar 'Hang Baishao' and analyzed the expression patterns of SOD family genes (PlSODs) in response to high-temperature stress and exogenous hormones. The present study identified ten potential PlSOD genes, encoding 145-261 amino acids, and their molecular weights varied from 15.319 to 29.973 kDa. Phylogenetic analysis indicated that PlSOD genes were categorized into three sub-families, and members within each sub-family exhibited similar conserved motifs. Gene expression analysis suggested that SOD genes were highly expressed in leaves, stems, and dormancy buds. Moreover, RNA-seq data revealed that PlCSD1-1, PlCSD3, and PlFSD1 may be related to high-temperature stress response. Finally, based on the Quantitative Real-time PCR (qRT-PCR) results, seven SOD genes were significantly upregulated in response to high-temperature stress, and exogenous EBR and ABA treatments can enhance high-temperature tolerance in P. lactiflora. Overall, these discoveries lay the foundation for elucidating the function of PlSOD genes for the thermotolerance of herbaceous peony and facilitating the genetic breeding of herbaceous peony cultivars with strong high-temperature resistance.

6.
Water Res ; 267: 122497, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39340864

RESUMO

Anaerobic ammonium oxidization (Anammox) process plays a crucial role in the global nitrogen cycle and sustainable biological nitrogen removal from wastewater. Although Anammox bacteria have been detected across mesophilic and thermophilic conditions, the direct cultivation of Anammox bacteria from thermal environments has remained elusive. This impedes limiting our understanding of their physiology and ecology in high-temperature habitats. Here, we successfully enriched Anammox bacteria from hot spring sediments at 45 °C, achieving an ammonium oxidation rate of 158.0 mg NH4+-N l-1d-1, with the genus 'Candidatus Brocadia' presenting 22.9 % of the total microbial community after about 500 days of operation. Metagenomic analysis recovered two high-quality genomes of novel Anammox bacteria, which we designed as 'Candidatus Brocadia thermophilus' and 'Candidatus Brocadia thermoanammoxidans'. Both of them encoded and actively expressed key metabolic genes involved in Anammox process and several genes associated with thermotolerance, demonstrating their remarkable ability to perform Anammox reaction in thermophilic environments. Notably, phylotypes related to 'Candidatus Brocadia thermoanammoxidans' have frequently been retrieved from geographically distinct natural habitats. These findings expand our understanding of thermophilic Anammox bacteria and underscore their potential in the nitrogen cycle of thermal natural and engineering ecosystems.

7.
Front Plant Sci ; 15: 1469613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246815

RESUMO

[This corrects the article DOI: 10.3389/fpls.2022.1072931.].

8.
Gene ; : 148922, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244169

RESUMO

AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKß and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.

9.
Sci Total Environ ; 954: 176476, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322079

RESUMO

As global warming intensifies, heat waves occur more frequently around the world. Heat stress from hot and humid environments poses a significant threat to human health. It can cause a significant increase in core body temperature (CBT), and even lead to life-threatening heat stroke. Extremely high CBT is considered the most important clinical symptom and prognostic indicator of heat stroke. To study it, we implanted temperature-monitoring capsules into the abdominal cavities of rats to measure their CBT values. The rats were then exposed to different hot and humid environments to monitor the resultant changes in their CBTs. The results showed that heat stress could induce a three-phase thermoregulatory response in rats under different conditions. A temperature plateau was observed as part of the three-phase thermoregulatory response, at a similar CBT across different conditions. The duration of this plateau can reflect the thermotolerance of rats in hot and humid environments. The third stage of the three-phase thermoregulatory response reflects the pathogenesis of heat stroke, which may present the key stage of heat injury. Moreover, a certain range of humidity did not affect the thermoregulatory responses of rats, but exerted a significant impact once a certain threshold was reached. In this study, the CBTs of the rats in different environments were monitored to characterize their thermoregulatory responses under heat stress. In particular, the discovery of the plateau phase and humidity threshold may help to better understand the effects of high temperature and humidity conditions on living organisms.

10.
Plant Cell Environ ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248643

RESUMO

Traditional leaf gas exchange experiments have focused on net CO2 exchange (Anet). Here, using California poplar (Populus trichocarpa), we coupled measurements of net oxygen production (NOP), isoprene emissions and δ18O in O2 to traditional CO2/H2O gas exchange with chlorophyll fluorescence, and measured light, CO2 and temperature response curves. This allowed us to obtain a comprehensive picture of the photosynthetic redox budget including electron transport rate (ETR) and estimates of the mean assimilatory quotient (AQ = Anet/NOP). We found that Anet and NOP were linearly correlated across environmental gradients with similar observed AQ values during light (1.25 ± 0.05) and CO2 responses (1.23 ± 0.07). In contrast, AQ was suppressed during leaf temperature responses in the light (0.87 ± 0.28), potentially due to the acceleration of alternative ETR sinks like lipid synthesis. Anet and NOP had an optimum temperature (Topt) of 31°C, while ETR and δ18O in O2 (35°C) and isoprene emissions (39°C) had distinctly higher Topt. The results confirm a tight connection between water oxidation and ETR and support a view of light-dependent lipid synthesis primarily driven by photosynthetic ATP/NADPH not consumed by the Calvin-Benson cycle, as an important thermotolerance mechanism linked with high rates of (photo)respiration and CO2/O2 recycling.

11.
J Exp Bot ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324623

RESUMO

Heat stress (HS) adversely impacts plant growth, development and grain yield. Heat shock factors (Hsf), especially HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to HS. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contains conserved domains: DNA binding, oligomerization and transcriptional activation. The protein was nuclear localized and had transcription activation activity. Yeast two hybrid and split luciferase complementary assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthesis rate of maize leaves, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicates that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under HS. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.

12.
Plants (Basel) ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39204766

RESUMO

In our previous research, we found that trichokonins' (TKs) employment improved the thermotolerance of the Lanzhou lily, a renowned edible crop species endemic to China that is relatively susceptible to high temperatures (HTs). Here, a novel Lanzhou lily GRAS gene, LzSCL9, was identified to respond to heat stress (HS) and HS+TKs treatment based on transcriptome and RT-qPCR analysis. TKs could improve the upregulation of LzSCL9 during long-term HS. The expression profile of LzSCL9 in response to HS with or without TKs treatment showed a significant positive correlation with LzHsfA2a-1, which was previously identified as a key regulator in TKs' conferred resilience to HT. More importantly, overexpression of LzSCL9 in the lily enhanced its tolerance to HTs and silencing LzSCL9 in the lily reduced heat resistance. Taken together, this study identified the positive role of LzSCL9 in TK-induced thermotolerance, thereby preliminarily establishing a molecular mechanism on TKs regulating the thermostability of the Lanzhou lily and providing a new candidate regulator for plant heat-resistant breeding.

13.
FASEB Bioadv ; 6(8): 223-234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114445

RESUMO

Global warming is a major challenge to the sustainable and humane production of food because of the increased risk of livestock to heat stress. Here, the example of the prolactin receptor (PRLR) gene is used to demonstrate how gene editing can increase the resistance of cattle to heat stress by the introduction of mutations conferring thermotolerance. Several cattle populations in South and Central America possess natural mutations in PRLR that result in affected animals having short hair and being thermotolerant. CRISPR/Cas9 technology was used to introduce variants of PRLR in two thermosensitive breeds of cattle - Angus and Jersey. Gene-edited animals exhibited superior ability to regulate vaginal temperature (heifers) and rectal temperature (bulls) compared to animals that were not gene-edited. Moreover, gene-edited animals exhibited superior growth characteristics and had larger scrotal circumference. There was no evidence for deleterious effects of the mutation on carcass characteristics or male reproductive function. These results indicate the potential for reducing heat stress in relevant environments to enhance cattle productivity.

14.
Int Microbiol ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107585

RESUMO

The emergence of Candida auris has caused a major concern in the public health worldwide. This novel fungus is characterized by its multidrug resistance profile, ability to thrive in harsh and stressful conditions, as well as high temperatures and salt concentrations, persistence on hospital surfaces, causing nosocomial infections and outbreaks, and unique fitness properties. Here, we study the antifungal susceptibility patterns, thermotolerance, and halotolerance of 15 putative C. auris clinical isolates from Inkosi Albert Academic Hospital, Durban, South Africa. Five of the C. auris isolates showed resistance to all three antifungals (fluconazole, amphotericin B, and micafungin) and were selected for characterization of their adaptability mechanisms. Four of the tested multidrug-resistant C. auris isolates (C. auris strain F25, C. auris strain F276, C. auris F283, and C. auris M153) showed good growth when exposed to high temperature (42 °C) and salinity (10% NaCl) conditions whereas one isolate (C. auris F65) showed moderate growth under these conditions. Candida parapsilosis showed poor growth whereas C. albicans no growth under these conditions. The five C. auris strains were positive for all the adaptive features.

15.
Arch Insect Biochem Physiol ; 116(4): e22128, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39166358

RESUMO

High temperature stress has long-term negative effects on the growth and development of silkworm (Bombyx mori). Different silkworm varieties show the different tolerance to high temperature. The induction of autophagy is linked to increased thermotolerance in diverse ectothermic organisms. However, the function of autophagy in the thermotolerant and thermosensitive silkworm strains under high-temperature conditions remains unclear. The thermotolerant Liangguang NO.2 and thermosensitive Jingsong × Haoyue strains were used to explore the role of autophagy in thermotolerance. Here, we first found that the larval body weight gain was increased in the thermosensitive Jingsong × Haoyue strain, but there was no difference in the thermotolerant Liangguang NO.2 strain under high temperature conditions. High temperature stress had a negative influence on the cocoon performance in both the Liangguang NO.2 and Jingsong × Haoyue strains. Additionally, the autophagy-related gene Atg5 mRNA expression in the Liangguang NO.2 strain was upregulated by high temperature, while the expression of Atg12 mRNA was reduced in the Jingsong × Haoyue strain. Titers of 20-Hydroxyecdysone and the ultraspiracle 1 mRNA expression in the Liangguang NO.2 strain were upregulated by high temperature, which might be associated with the induction of autophagy. These results demonstrate the potentially regulatory mechanism of autophagy in silkworms' tolerance to high temperature, providing a theoretical basis for exploring the physiological mechanism of thermotolerance in insects.


Assuntos
Autofagia , Bombyx , Temperatura Alta , Larva , Termotolerância , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/fisiologia , Bombyx/genética , Larva/crescimento & desenvolvimento , Trato Gastrointestinal/crescimento & desenvolvimento , Ecdisterona , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
16.
Front Genet ; 15: 1392670, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39149588

RESUMO

Background: Identifying molecular mechanisms responsible for the response to heat stress is essential to increase production, reproduction, health, and welfare. This study aimed to identify early biological responses and potential biomarkers involved in the response to heat stress and animal's recovery in tropically adapted beef cattle through proteomic analysis of blood plasma. Methods: Blood samples were collected from 14 Caracu males during the heat stress peak (HSP) and 16 h after it (heat stress recovery-HSR) assessed based on wet bulb globe temperature index and rectal temperature. Proteome was investigated by liquid chromatography-tandem mass spectrometry from plasma samples, and the differentially regulated proteins were evaluated by functional enrichment analysis using DAVID tool. The protein-protein interaction network was evaluated by STRING tool. Results: A total of 1,550 proteins were detected in both time points, of which 84 and 65 were downregulated and upregulated during HSR, respectively. Among the differentially regulated proteins with the highest absolute log-fold change values, those encoded by the GABBR1, EPHA2, DUSP5, MUC2, DGCR8, MAP2K7, ADRA1A, CXADR, TOPBP1, and NEB genes were highlighted as potential biomarkers because of their roles in response to heat stress. The functional enrichment analysis revealed that 65 Gene Ontology terms and 34 pathways were significant (P < 0.05). We highlighted those that could be associated with the response to heat stress, such as those related to the immune system, complement system, hemostasis, calcium, ECM-receptor interaction, and PI3K-Akt and MAPK signaling pathways. In addition, the protein-protein interaction network analysis revealed several complement and coagulation proteins and acute-phase proteins as important nodes based on their centrality and edges. Conclusion: Identifying differentially regulated proteins and their relationship, as well as their roles in key pathways contribute to improve the knowledge of the mechanisms behind the response to heat stress in naturally adapted cattle breeds. In addition, proteins highlighted herein are potential biomarkers involved in the early response and recovery from heat stress in tropically adapted beef cattle.

17.
Front Oncol ; 14: 1428065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165690

RESUMO

In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels. A phenomenon of temporary resistance to heat, known as thermotolerance, follows each HT session. Cancer treatment requires innovative concepts and combinations to be tested but, for a meaningful development of clinical trials, the understanding of the underlying mechanisms of the tested modalities is essential. In this mini-review, we aimed to describe the synergistic effects of the combination of HT with RT as well as the phenomena of thermal shock and thermotolerance, in order to stimulate clinicians in new, clinically relevant concepts and combinations, which become particularly relevant in the era of technological advents in both modalities but also cancer immunotherapy.

18.
J Exp Bot ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167699

RESUMO

Light and temperature are the two most variable environmental signals, which significantly regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signaling pathways converge, and regulate plant development. This review outlines diverse mechanisms of light and temperature perception and downstream signaling, with an emphasis on their integration and interconnection. The recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signaling proteins under different light conditions, and circadian clock components at warm temperatures. We have made an attempt to comprehensively describe these studies and demonstrate their connection with plant developmental responses. We have also explained how gene signaling pathways of light and thermomorphogenesis, are interconnected with HSR-mediated thermotolerance, which reveals new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signaling molecules between light and temperature is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.

19.
DNA Res ; 31(4)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39101533

RESUMO

With glossy, wax-coated leaves, Rubus leucanthus is one of the few heat-tolerant wild raspberry trees. To ascertain the underlying mechanism of heat tolerance, we generated a high-quality genome assembly with a genome size of 230.9 Mb and 24,918 protein-coding genes. Significantly expanded gene families were enriched in the flavonoid biosynthesis pathway and the circadian rhythm-plant pathway, enabling survival in subtropical areas by accumulating protective flavonoids and modifying photoperiodic responses. In contrast, plant-pathogen interaction and MAPK signaling involved in response to pathogens were significantly contracted. The well-known heat response elements (HSP70, HSP90, and HSFs) were reduced in R. leucanthus compared to two other heat-intolerant species, R. chingii and R. occidentalis, with transcriptome profiles further demonstrating their dispensable roles in heat stress response. At the same time, three significantly positively selected genes in the pathway of cuticular wax biosynthesis were identified, and may contribute to the glossy, wax-coated leaves of R. leucanthus. The thick, leathery, waxy leaves protect R. leucanthus against pathogens and herbivores, supported by the reduced R gene repertoire in R. leucanthus (355) compared to R. chingii (376) and R. occidentalis (449). Our study provides some insights into adaptive divergence between R. leucanthus and other raspberry species on heat tolerance.


Assuntos
Genoma de Planta , Folhas de Planta , Rubus , Ceras , Rubus/genética , Rubus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Termotolerância/genética , Resposta ao Choque Térmico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
20.
J Exp Zool A Ecol Integr Physiol ; 341(9): 1030-1040, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39005228

RESUMO

Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (Taeniopygia castanotis) exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.


Assuntos
Tentilhões , Proteínas de Choque Térmico , Temperatura Alta , Animais , Masculino , Tentilhões/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Temperatura Alta/efeitos adversos , Testículo/metabolismo , Estresse Fisiológico , Fígado/metabolismo , Resposta ao Choque Térmico/fisiologia , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA