Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.078
Filtrar
1.
Front Neurosci ; 18: 1382613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086839

RESUMO

Introduction: Emerging evidence suggests changes in several cognitive control processes in individuals with age-related hearing loss (ARHL). However, value-directed strategic processing, which involves selectively processing salient information based on high value, has been relatively unexplored in ARHL. Our previous work has shown behavioral changes in strategic processing in individuals with ARHL. The current study examined event-related alpha and theta oscillations linked to a visual, value-directed strategic processing task in 19 individuals with mild untreated ARHL and 17 normal hearing controls of comparable age and education. Methods: Five unique word lists were presented where words were assigned high- or low-value based on the letter case, and electroencephalography (EEG) data was recorded during task performance. Results: The main effect of the group was observed in early time periods. Specifically, greater theta synchronization was seen in the ARHL group relative to the control group. Interaction between group and value was observed at later time points, with greater theta synchronization for high- versus low-value information in those with ARHL. Discussion: Our findings provide evidence for oscillatory changes tied to a visual task of value-directed strategic processing in individuals with mild untreated ARHL. This points towards modality-independent neurophysiological changes in cognitive control in individuals with mild degrees of ARHL and adds to the rapidly growing literature on the cognitive consequences of ARHL.

2.
Sci Rep ; 14(1): 17883, 2024 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095523

RESUMO

In occupational therapy, crafts and groups are used as therapeutic tools, but their electrophysiological effects have not been well described. This study aimed to investigate the effects of group crafting on the physiological synchrony (PS) of dyadic heartbeats and on the autonomic activity and electroencephalogram (EEG) of individuals. In this cross-sectional study, individuals' EEG and dyadic electrocardiogram (ECG) were measured during the task in a variety of conditions. The three conditions were alone, parallel, nonparallel. Autonomic activity from the subjects' ECG, PS from the dyadic ECG, and current source density from exact Low Resolution Brain Electromagnetic Tomography (eLORETA) from subjects' EEG were analyzed. Measurements from 30 healthy young adults showed that the parallel condition significantly increased subjects' parasympathetic activity and dyadic PS. Parallel condition and frontal midline theta influenced parasympathetic activity, whereas parasympathetic activity was not associated with PS. Dyadic lag value were correlated with frontal delta, beta, and gamma activity. The results suggest that crafting in parallel groups increases parasympathetic activity and PS through different mechanisms, despite the absence of direct interaction. They also explain the electrophysiological evidence for the use of crafts and groups in psychiatric occupational therapy, such as increased relaxation and PS.


Assuntos
Eletrocardiografia , Eletroencefalografia , Humanos , Masculino , Eletroencefalografia/métodos , Feminino , Adulto , Adulto Jovem , Estudos Transversais , Frequência Cardíaca/fisiologia , Encéfalo/fisiologia
3.
J Psychopharmacol ; 38(8): 724-734, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087306

RESUMO

BACKGROUND: Cannabis is the most widely used psychoactive drug in the United States. While multiple studies have associated acute cannabis consumption with alterations in cognitive function (e.g., visual and spatial attention), far less is known regarding the effects of chronic consumption on the neural dynamics supporting these cognitive functions. METHODS: We used magnetoencephalography (MEG) and an established visuospatial processing task to elicit multi-spectral neuronal responses in 44 regular cannabis users and 53 demographically matched non-user controls. To examine the effects of chronic cannabis use on the oscillatory dynamics underlying visuospatial processing, neural responses were imaged using a time-frequency resolved beamformer and compared across groups. RESULTS: Neuronal oscillations serving visuospatial processing were identified in the theta (4-8 Hz), alpha (8-14 Hz), and gamma range (56-76 Hz), and these were imaged and examined for group differences. Our key results indicated that users exhibited weaker theta oscillations in occipital and cerebellar regions and weaker gamma responses in the left temporal cortices compared to non-users. Lastly, alpha oscillations did not differ, but alpha connectivity among higher-order attention areas was weaker in cannabis users relative to non-users and correlated with performance. CONCLUSIONS: Overall, these results suggest that chronic cannabis users have alterations in the oscillatory dynamics and neural connectivity serving visuospatial attention. Such alterations were observed across multiple cortical areas critical for higher-order processing and may reflect compensatory activity and/or the initial emergence of aberrant dynamics. Future work is needed to fully understand the implications of altered multispectral oscillations and neural connectivity in cannabis users.


Assuntos
Atenção , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Atenção/efeitos dos fármacos , Atenção/fisiologia , Percepção Visual/fisiologia , Percepção Visual/efeitos dos fármacos , Encéfalo/fisiopatologia , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Cognição/fisiologia
4.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39110414

RESUMO

Adaptive behavior is fundamental to cognitive control and executive functioning. This study investigates how cognitive control mechanisms and episodic feature retrieval interact to influence adaptiveness, focusing particularly on theta (4 to 8 Hz) oscillatory dynamics. We conducted two variations of the Simon task, incorporating response-incompatible, response-compatible, and neutral trials. Experiment 1 demonstrated that cognitive adjustments-specifically, cognitive shielding following incompatible trials and cognitive relaxation following compatible ones-are reflected in midfrontal theta power modulations associated with the Simon effect. Experiment 2 showed that reducing feature overlap between trials leads to less pronounced sequential modulations in behavior and midfrontal theta activity, supporting the hypothesis that cognitive control and feature integration share a common neural mechanism. These findings highlight the interaction of cognitive control processes and episodic feature integration in modulating behavior. The results advocate for hybrid models that combine top-down and bottom-up processes as a comprehensive framework to understand cognitive control dynamics and adaptive behavior.


Assuntos
Cognição , Conflito Psicológico , Função Executiva , Ritmo Teta , Humanos , Ritmo Teta/fisiologia , Masculino , Feminino , Adulto Jovem , Cognição/fisiologia , Adulto , Função Executiva/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Desempenho Psicomotor/fisiologia , Adaptação Psicológica/fisiologia , Encéfalo/fisiologia
5.
J Comput Neurosci ; 52(3): 183-196, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120822

RESUMO

Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (rTMS) with unknown underlying mechanisms and highly variable responses across subjects. To investigate these issues, we developed a simple computational model. Our model consisted of two neurons linked by an excitatory synapse that incorporates two mechanisms: short-term plasticity (STP) and spike-timing-dependent plasticity (STDP). We applied a variable-amplitude current through I-clamp with a TBS time pattern to the pre- and post-synaptic neurons, simulating synaptic plasticity. We analyzed the results and provided an explanation for the effects of TBS, as well as the variability of responses to it. Our findings suggest that the interplay of STP and STDP mechanisms determines the direction of plasticity, which selectively affects synapses in extended neurons and underlies functional effects. Our model describes how the timing, number, and intensity of pulses delivered to neurons during rTMS contribute to induced plasticity. This not only successfully explains the different effects of intermittent TBS (iTBS) and continuous TBS (cTBS), but also predicts the results of other protocols such as 10 Hz rTMS. We propose that the variability in responses to TBS can be attributed to the variable span of neuronal thresholds across individuals and sessions. Our model suggests a biologically plausible mechanism for the diverse responses to TBS protocols and aligns with experimental data on iTBS and cTBS outcomes. This model could potentially aid in improving TBS and rTMS protocols and customizing treatments for patients, brain areas, and brain disorders.


Assuntos
Simulação por Computador , Modelos Neurológicos , Plasticidade Neuronal , Neurônios , Ritmo Teta , Estimulação Magnética Transcraniana , Ritmo Teta/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Humanos , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais
6.
Appetite ; 201: 107616, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098082

RESUMO

In food choices, conflict arises when choosing between a healthy, but less tasty food item and a tasty, but less healthy food item. The underlying assumption is that people trade-off the health and taste properties of food items to reach a decision. To probe this assumption, we presented food items either as colored images (image condition, e.g. photograph of a granola bar) or as pre-matched percentages of taste and health values (text condition, e.g., 20% healthy and 80% tasty). We recorded choices, response times and electroencephalography activity to calculate mid-frontal theta power as a marker of conflict. At the behavioral level, we found higher response times for healthy compared to unhealthy choices, and for difficult compared to easy decisions in both conditions, indicating the experience of a decision conflict. At the neural level, mid-frontal theta power was higher for healthy choices than unhealthy choices and difficult choices compared to easy choices, but only in the image condition. Those results suggest that either conflict type and/or decision strategies differ between the image and text conditions. The present results can be helpful in understanding how dietary decisions can be influenced towards healthier food choices.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39105815

RESUMO

In adults affected by Major Depressive Disorder (MDD), most findings point to higher electroencephalographic (EEG) theta power during wake compared to healthy controls (HC) as a potential biomarker aiding the diagnostic process or subgrouping for stratified treatment. Besides these group differences, theta power is modulated by time of day, sleep/wake history, and age. Thus, we aimed at assessing if the time of recording alters theta power in teenagers affected by MDD or HC. Standardized wake EEG power was assessed with high-density EEG in 15 children and adolescents with MDD and in 15 age- and sex-matched HC in the evening and morning. Using a two-way ANOVA, group, time, and their interaction were tested. In patients, the current severity of depression was rated using the Children's Depression Rating Scale. Broadband EEG power was lower in the morning after sleep, with a significant interaction (group x time) in central regions in the 4-6 Hz range. In MDD relative to HC, theta power was decreased over occipital areas in the evening and increased over frontal areas in the morning. A higher frontal theta power was correlated with more severe depressive mood in the morning but not in the evening. This was a cross-sectional study design, including patients on antidepressant medication. In conclusion, depending on time of recording, region-specific opposite differences of theta power were found between teenagers with MDD and HC. These findings stress the importance of the time of the recording when investigating theta power's relationship to psychopathology.

8.
MethodsX ; 13: 102826, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39049927

RESUMO

Gait impairment and neurogenic bladder are co-existing common findings in incomplete spinal cord injury (iSCI). Repetitive transcranial magnetic stimulation (rTMS), evident to be a promising strategy adjunct to physical rehabilitation to regain normal ambulation in SCI. However, there is a need to evaluate the role of Intermittent theta burst stimulation (iTBS), a type of patterned rTMS in restoring gait and neurogenic bladder in SCI patients. The aim of the present study is to quantify the effect of iTBS on spatiotemporal, kinetic, and kinematic parameters of gait and neurogenic bladder dyssynergia in iSCI. After maturing all exclusion and inclusion criteria, thirty iSCI patients will be randomly divided into three groups: Group-A (sham), Group-B (active rTMS) and Group-C (active iTBS). Each group will receive stimulation adjunct to physical rehabilitation for 2 weeks. All patients will undergo gait analysis, as well assessment of bladder, electrophysiological, neurological, functional, and psychosocial parameters. All parameters will be assessed at baseline and 6th week (1st follow-up). Parameters except urodynamics and gait analysis will also be assessed after the end of the 2 weeks of the intervention (post-intervention) and at 12th week (2nd follow-up). Appropriate statistical analysis will be done using various parametric and non-parametric tests based on results.

9.
Plant J ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052360

RESUMO

With the advancement of CRISPR technologies, a comprehensive understanding of repair mechanisms following double-strand break (DSB) formation is important for improving the precision and efficiency of genetic modifications. In plant genetics, two Cas nucleases are widely used, i.e. Cas9 and Cas12a, which differ with respect to PAM sequence composition, position of the DSB relative to the PAM, and DSB-end configuration (blunt vs. staggered). The latter difference has led to speculations about different options for repair and recombination. Here, we provide detailed repair profiles for LbCas12a in Arabidopsis thaliana, using identical experimental settings previously reported for Cas9-induced DSBs, thus allowing for a quantitative comparison of both nucleases. For both enzymes, non-homologous end-joining (NHEJ) produces 70% of mutations, whereas polymerase theta-mediated end-joining (TMEJ) generates 30%, indicating that DSB-end configuration does not dictate repair pathway choice. Relevant for genome engineering approaches aimed at integrating exogenous DNA, we found that Cas12a similarly stimulates the integration of T-DNA molecules as does Cas9. Long-read sequencing of both Cas9 and Cas12a repair outcomes further revealed a previously underappreciated degree of DNA loss upon TMEJ. The most notable disparity between Cas9 and Cas12a repair profiles is caused by how NHEJ acts on DSB ends with short overhangs: non-symmetric Cas9 cleavage produce 1 bp insertions, which we here show to depend on polymerase Lambda, whereas staggered Cas12a DSBs are not subjected to fill-in synthesis. We conclude that Cas9 and Cas12a are equally effective for genome engineering purposes, offering flexibility in nuclease choice based on the availability of compatible PAM sequences.

10.
Cell Rep ; 43(8): 114539, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39052483

RESUMO

The mammillary bodies (MBOs), a group of hypothalamic nuclei, play a pivotal role in memory formation and spatial navigation. They receive extensive inputs from the hippocampus through the fornix, but the physiological significance of these connections remains poorly understood. Damage to the MBOs is associated with various forms of anterograde amnesia. However, information about the physiological characteristics of the MBO is limited, primarily due to the limited number of studies that have directly monitored MBO activity along with population patterns of its upstream partners. Employing large-scale silicon probe recording in mice, we characterize MBO activity and its interaction with the subiculum across various brain states. We find that MBO cells are highly diverse in their relationship to theta, ripple, and slow oscillations. Several of the physiological features are inherited by the topographically organized inputs to MBO cells. Our study provides insights into the functional organization of the MBOs.

11.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39057053

RESUMO

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

12.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066076

RESUMO

Electroencephalography (EEG) wearable devices are particularly suitable for monitoring a subject's engagement while performing daily cognitive tasks. EEG information provided by wearable devices varies with the location of the electrodes, the suitable location of which can be obtained using standard multi-channel EEG recorders. Cognitive engagement can be assessed during working memory (WM) tasks, testing the mental ability to process information over a short period of time. WM could be impaired in patients with epilepsy. This study aims to evaluate the cognitive engagement of nine patients with epilepsy, coming from a public dataset by Boran et al., during a verbal WM task and to identify the most suitable location of the electrodes for this purpose. Cognitive engagement was evaluated by computing 37 engagement indexes based on the ratio of two or more EEG rhythms assessed by their spectral power. Results show that involvement index trends follow changes in cognitive engagement elicited by the WM task, and, overall, most changes appear most pronounced in the frontal regions, as observed in healthy subjects. Therefore, involvement indexes can reflect cognitive status changes, and frontal regions seem to be the ones to focus on when designing a wearable mental involvement monitoring EEG system, both in physiological and epileptic conditions.


Assuntos
Eletroencefalografia , Epilepsia , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Epilepsia/fisiopatologia , Eletroencefalografia/métodos , Masculino , Feminino , Adulto , Couro Cabeludo/fisiologia , Cognição/fisiologia , Dispositivos Eletrônicos Vestíveis , Eletrodos , Pessoa de Meia-Idade , Adulto Jovem
13.
Brain Sci ; 14(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061363

RESUMO

The original conceptualization of REM sleep as paradoxical sleep was based on its EEG resembling wakefulness and its association with dreaming. Over time, the concept of paradox was expanded to include various associations with REM sleep, such as dream exclusivity, high recall, and pathophysiology. However, none of these associations are unique to REM sleep; they can also occur in other sleep states. Today, after more than fifty years of focused research, two aspects of REMS clearly retain paradoxical exclusivity. Despite the persistent contention that the EEG of human REMS consists of wake-like, low-voltage, non-synchronous electrical discharges, REMS is based on and defined by the intracranial electrical presence of 5-8 Hz. theta, which has always been the marker of REMS in other animals. The wake-like EEG used to define REMS on human polysomnography is secondary to a generalized absence of electrophysiological waveforms because the strong waves of intracranial theta do not propagate to scalp electrodes placed outside the skull. It is a persistent paradox that the theta frequency is restricted to a cyclical intracranial dynamic that does not extend beyond the lining of the brain. REMS has a persistent association with narratively long and salient dream reports. However, the extension of this finding to equate REMS with dreaming led to a foundational error in neuroscientific logic. Major theories and clinical approaches were built upon this belief despite clear evidence that dreaming is reported throughout sleep in definingly different physiologic and phenomenological forms. Few studies have addressed the differences between the dreams reported from the different stages of sleep so that today, the most paradoxical aspect of REMS dreaming may be how little the state has actually been studied. An assessment of the differences in dreaming between sleep stages could provide valuable insights into how dreaming relates to the underlying brain activity and physiological processes occurring during each stage. The brain waves and dreams of REMS persist as being paradoxically unique and different from waking and the other states of sleep consciousness.

14.
Brain Sci ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39061423

RESUMO

Schizophrenia is a chronic psychiatric disorder severely affecting patients' functioning and quality of life. Unlike positive symptoms, cognitive impairment and negative symptoms cannot be treated pharmacologically and represent consistent predictors of the illness's prognosis. Cognitive remediation (CR) interventions have been applied to target these symptoms. Brain stimulation also provides promising yet preliminary results in reducing negative symptoms, whereas its effect on cognitive impairment remains heterogeneous. Here, we combined intermittent theta burst stimulation (iTBS) with CR to improve negative symptoms and cognitive impairment in schizophrenia spectrum patients. One hundred eligible patients were invited, and twenty-one participated. We randomized them into four groups, manipulating the stimulation condition (real vs. sham) and CR (no training vs. training). We delivered fifteen iTBS sessions over the left dorsolateral prefrontal cortex for three weeks, followed (or not) by 50 min of training. Consensus-based clinical and cognitive assessment was administered at baseline and after the treatment, plus at three follow-ups occurring one, three, and six months after the intervention. Mixed-model analyses were run on cognitive and negative symptom scores. The preliminary findings highlighted a marginal modulation of iTBS on negative symptoms, whereas CR improved isolated cognitive functions. We herein discuss the limitations and strengths of the methodological approach.

15.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39046456

RESUMO

Implicit visuomotor sequence learning is crucial for acquiring skills that result in automated behaviors. The oscillatory dynamics underpinning this learning process are not well understood. To address this gap, the current study employed electroencephalography with a medium-density array (64 electrodes) to investigate oscillatory activity associated with implicit visuomotor sequence learning in the Serial Reaction Time task. In the task, participants unknowingly learn a series of finger movements. Eighty-five healthy adults participated in the study. Analyses revealed that theta activity at the vertex and alpha/beta activity over the motor areas decreased over the course of learning. No associations between alpha/beta and theta power were observed. These findings are interpreted within a dual-process framework: midline theta activity is posited to regulate top-down attentional processes, whereas beta activity from motor areas underlies the bottom-up encoding of sensory information from movement. From this model, we suggest that during implicit visuomotor sequence learning, top-down processes become disengaged (indicated by a reduction in theta activity), and modality specific bottom-up processes encode the motor sequence (indicated by a reduction in alpha/beta activity).


Assuntos
Eletroencefalografia , Desempenho Psicomotor , Tempo de Reação , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Aprendizagem/fisiologia , Adolescente , Aprendizagem Seriada/fisiologia , Ritmo Teta/fisiologia , Movimento/fisiologia
16.
Elife ; 122024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037771

RESUMO

Functional interactions between the prefrontal cortex and hippocampus, as revealed by strong oscillatory synchronization in the theta (6-11 Hz) frequency range, correlate with memory-guided decision-making. However, the degree to which this form of long-range synchronization influences memory-guided choice remains unclear. We developed a brain-machine interface that initiated task trials based on the magnitude of prefrontal-hippocampal theta synchronization, then measured choice outcomes. Trials initiated based on strong prefrontal-hippocampal theta synchrony were more likely to be correct compared to control trials on both working memory-dependent and -independent tasks. Prefrontal-thalamic neural interactions increased with prefrontal-hippocampal synchrony and optogenetic activation of the ventral midline thalamus primarily entrained prefrontal theta rhythms, but dynamically modulated synchrony. Together, our results show that prefrontal-hippocampal theta synchronization leads to a higher probability of a correct choice and strengthens prefrontal-thalamic dialogue. Our findings reveal new insights into the neural circuit dynamics underlying memory-guided choices and highlight a promising technique to potentiate cognitive processes or behavior via brain-machine interfacing.


Assuntos
Tomada de Decisões , Hipocampo , Córtex Pré-Frontal , Ritmo Teta , Córtex Pré-Frontal/fisiologia , Tomada de Decisões/fisiologia , Ritmo Teta/fisiologia , Hipocampo/fisiologia , Animais , Masculino , Memória/fisiologia , Interfaces Cérebro-Computador , Humanos , Tálamo/fisiologia , Optogenética
17.
Elife ; 122024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037765

RESUMO

Hippocampal place cells in freely moving rodents display both theta phase precession and procession, which is thought to play important roles in cognition, but the neural mechanism for producing theta phase shift remains largely unknown. Here, we show that firing rate adaptation within a continuous attractor neural network causes the neural activity bump to oscillate around the external input, resembling theta sweeps of decoded position during locomotion. These forward and backward sweeps naturally account for theta phase precession and procession of individual neurons, respectively. By tuning the adaptation strength, our model explains the difference between 'bimodal cells' showing interleaved phase precession and procession, and 'unimodal cells' in which phase precession predominates. Our model also explains the constant cycling of theta sweeps along different arms in a T-maze environment, the speed modulation of place cells' firing frequency, and the continued phase shift after transient silencing of the hippocampus. We hope that this study will aid an understanding of the neural mechanism supporting theta phase coding in the brain.


Assuntos
Potenciais de Ação , Células de Lugar , Ritmo Teta , Animais , Ritmo Teta/fisiologia , Células de Lugar/fisiologia , Potenciais de Ação/fisiologia , Modelos Neurológicos , Hipocampo/fisiologia , Hipocampo/citologia , Adaptação Fisiológica , Ratos
18.
J Affect Disord ; 363: 99-105, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009309

RESUMO

BACKGROUND: Abnormalities in large-scale neuronal networks-the frontoparietal central executive network (CEN)-are consistent findings in bipolar disorder and potential therapeutic targets for transcranial magnetic stimulation (TMS). OBJECTIVE: The present study aimed to assess the effects of CEN neurocircuit-based sequential TMS on the clinical symptoms and cognitive functions of adolescents with bipolar II disorder. METHODS: The study was a single-blinded, randomized, placebo-control trial. Participants with DSM-5-defined bipolar disorder II were recruited and randomized to receive either a sham treatment (n = 20) or an active TMS treatment (n = 22). The active group patients were taking medication, with intermittent theta burst stimulation (iTBS) treatment provided as adjunctive treatment targeting the left DLPFC, the left ITG, and the left PPC nodes consecutively. Patients completed the measurements of HAMD and the Das-Naglieri Cognition Assessment System at baseline and 3 weeks after the intervention. RESULTS: A significant group-by-time interaction was observed in the HAMD, total cognition, and planning. Post-hoc analysis revealed that patients in the active group significantly improved HAMD scores following neurostimulation. Moreover, within-subject analysis indicated that the active group significantly improved in scores of total cognition and planning, while the sham group did not. No significant differences were seen in the other cognitive measures. CONCLUSION: The neurocircuit-based sequential TMS protocol targeting three CEN nodes, in conjunction with medication, safely and effectively improved depressive symptoms and cognitive function in adolescents with bipolar II disorder.

19.
Dysphagia ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008039

RESUMO

Dysphagia is the most common serious complication after stroke, with an incidence of about 37-78%, which seriously affects the independence of patients in daily life and clinical recovery. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulation technique, is an emerging option for post-stroke dysphagia. Theta burst stimulation (TBS) is a new mode of transcranial magnetic stimulation that simulates the frequency of pulses released in the hippocampus.Intermittent theta burst stimulation (iTBS) has been shown to increase cortical excitability and improve swallowing function in patients. Our study sought to summarize existing clinical randomized controlled trials to provide evidence-based medical evidence for the clinical use of iTBS. A computer search was conducted on 4 Chinese (Chinese Biomedical Literature Database, VIP Information Resource System, CNKI, and Wanfang Medical Science) and 4 English (including Cochrane Library, Embase, PubMed, Web of Science) databases to retrieve all randomized controlled trials in Chinese and English that explored the effects of Intermittent Theta Burst Stimulation for post-stroke dysphagia. The retrieval years are from database construction to 23 November 2023. The primary outcome measure was a change in Penetration/Aspiration Scale (PAS), Standardized Swallowing Assessment (SSA) and Functional Oral Intake Scale (FOIS), Secondary outcomes included Fiberoptic Endoscopic Dysphagia Severity Scale (FEDSS), water-swallowing test (WST) etc. A meta-analysis by Standardized Mean Difference (SMD) and 95% confidence interval (CI) was performed with RevMan 5.3. we appraise risk of bias(RoB) of each study with the Cochrane RoB tool. Detailed instructions for using the Cochrane RoB tool are provided in the Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Handbook). Nine studies were obtained from eight databases after screening by inclusion and exclusion criteria, 567 patients from 9 studies were included in the meta-analysis, and one study was included in the qualitative analysis due to different control groups. Two of the nine studies had an unclear risk of bias, and four studies were at low risk. The results showed that iTBS significantly improved SSA, PAS, FOIS, and PAS scores in stroke patients compared to the control group(P < 0.05), and promoted swallowing function recovery. Our systematic review provides the first evidence of the efficacy of iTBS in improving dysphagia in stroke patients. However, the number of available studies limits the persuasiveness of the evidence and further validation by additional randomized controlled trials is needed.

20.
Appl Neuropsychol Child ; : 1-19, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996080

RESUMO

The relationship between brainwave oscillations and Attention-Deficit/Hyperactivity Disorder (ADHD)-related cognitive challenges is a trending proposition in the field of Cognitive Neuroscience. Studies suggest the role of brainwave oscillations in the symptom expressions of ADHD-diagnosed children. Intervention studies have further suggested the scope of brain stimulation techniques in improving cognition. The current manuscript explored the effect of changes in the brainwaves post-sensory entrainment on cognitive performance of children. We calculated each participant's brainwave difference and ratios of theta, alpha, and beta power after the entrainment sessions. Further, we explored possible correlations between these values and the psychometric scores. The beta resting state showed the strongest association with selective attention performance of all participants. Theta-beta ratio (TBR) showed an inverse correlation with selective attention and working memory performances. The theta frequency was associated with decreased working performance in children without ADHD. Our findings also suggest a predominant role of TBR than the theta-alpha ratio in determining the cognitive performance of children with ADHD. The individual differences in the entrainment reception were attributed to the participant's age, IQ, and their innate baseline frequencies. The implications of our findings can initiate substantiating brainwave-based entrainment sessions as a therapeutic modality to improve cognition among children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA