Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 141: 109009, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598735

RESUMO

Thioredoxin-like protein 1 (TXNL1) is a redox-active protein belonging to the thioredoxin family, which mainly controls the redox status of cells. The TXNL1 gene from Amphiprion clarkii (AcTXNL1) was obtained from a pre-established transcriptome database. The AcTXNL1 is encoded with 289 amino acids and is predominantly localized in the cytoplasm and nucleus. The TXN domain of AcTXNL1 comprises a34CGPC37 motif with redox-reactive thiol (SH-) groups. The spatial distribution pattern of AcTXNL1 mRNA was examined in different tissues, and the muscle was identified as the highest expressed tissue. AcTXNL1 mRNA levels in the blood and gills were significantly increased in response to different immunostimulants. In vitro antioxidant capacity of the recombinant AcTXNL1 protein (rACTXNL1) was evaluated using the ABTS free radical-scavenging activity assay, cupric ion reducing antioxidant capacity assay, turbidimetric disulfide reduction assay, and DNA nicking protection assay. The potent antioxidant activity of rAcTXNL1 exhibited a concentration-dependent manner in all assays. Furthermore, in the cellular environment, overexpression of AcTXNL1 increased cell viability under H2O2 stress and reduced nitric oxide (NO) production induced by lipopolysaccharides (LPS). Collectively, the experimental results revealed that AcTXNL1 is an antioxidant and immunologically important gene in A. clarkii.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Animais , Antioxidantes/metabolismo , Sequência de Aminoácidos , Proteínas de Peixes/química , Proteínas Recombinantes/genética , Tiorredoxinas/genética , Tiorredoxinas/química , RNA Mensageiro
2.
Dev Comp Immunol ; 144: 104691, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36967023

RESUMO

Thioredoxin-like protein-1 (TXNL1) is the member of thioredoxin superfamily, a family of thiol oxidoreductases. TXNL1 plays an important role in scavenging ROS and the maintenance of cellular redox balance. However, its physiological functions in Andrias davidianus have not been well understood. In the present study, the full-length cDNA encoding thioredoxin-like protein-1 (AdTXNL1) of A. davidianus was cloned, the mRNA tissue distribution was analyzed, and the function was characterized. The Adtxnl1 cDNA contained an open reading frame (ORF) of 870 bp encoding a polypeptide of 289 amino acids with the N-terminal TRX domain, a Cys34-Ala35-Pro36-Cys37 (CAPC) motif, and the C-terminal proteasome-interacting thioredoxin domain (PITH). The mRNA of AdTXNL1 was expressed in a wide range of tissues, with the highest level in the liver. The transcript level of AdTXNL1 was significantly up-regulated post Aeromonas hydrophila challenge in liver tissue. Moreover, the recombinant AdTXNL1 protein was produced and purified, and used to investigate the antioxidant activity. In the insulin disulfide reduction assay, rAdTXNL1 exhibited strong antioxidant capability. Altogether, the thioredoxin-like protein-1 may be involved in reduction/oxidation (redox) balance and as an important immunological gene in A. davidianus.


Assuntos
Tiorredoxinas , Urodelos , Animais , DNA Complementar/genética , Distribuição Tecidual , Clonagem Molecular , Proteínas Recombinantes/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Urodelos/genética , RNA Mensageiro/genética
3.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008758

RESUMO

Cadmium (Cd) is a heavy metal toxicant and is widely distributed in aquatic environments. It can cause excessive production of reactive oxygen species (ROS) in the organism, which in turn leads to a series of oxidative damages. Thioredoxin (Trx), a highly conserved disulfide reductase, plays an important role in maintaining the intracellular redox homeostasis in eukaryotes and prokaryotes. Phascolosoma esculenta is an edible marine worm, an invertebrate that is extensively found on the mudflats of coastal China. To explore the molecular response of Trx in mudflat organisms under Cd stress, we identified a new Trx isoform (Trx-like protein 1 gene) from P. esculenta for the first time, designated as PeTrxl. Molecular and structural characterization, as well as multiple sequence and phylogenetic tree analysis, demonstrated that PeTrxl belongs to the Trx superfamily. PeTrxl transcripts were found to be ubiquitous in all tissues, and the highest expression level occurred in the coelomic fluid. Exposure to three sublethal concentrations of Cd resulted in the upregulation and then downregulation of PeTrxl expression levels over time in coelomic fluid of P. esculenta. The significant elevation of PeTrxl expression after 12 and 24 h of Cd exposure at 6 and 96 mg/L, respectively, might reflect its important role in the resistance to Cd stress. Recombinant PeTrxl (rPeTrxl) showed prominent dose-dependent insulin-reducing and ABTS free radical-scavenging abilities. After exposure to 96 mg/L Cd for 24 h, the ROS level increased significantly in the coelomic fluid, suggesting that Cd induced oxidative stress in P. esculenta. Furthermore, the injection of rPeTrxl during Cd exposure significantly reduced the ROS in the coelomic fluid. Our data suggest that PeTrxl has significant antioxidant capacity and can protect P. esculenta from Cd-induced oxidative stress.


Assuntos
Anelídeos/genética , Cádmio/toxicidade , Estresse Fisiológico/genética , Tiorredoxinas/genética , Sequência de Aminoácidos , Animais , Anelídeos/efeitos dos fármacos , Sequência de Bases , Benzotiazóis/química , Líquidos Corporais/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Sequestradores de Radicais Livres/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Oxirredução , Filogenia , Redobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Ácidos Sulfônicos/química , Tiorredoxinas/química , Tiorredoxinas/isolamento & purificação , Tiorredoxinas/metabolismo , Distribuição Tecidual
4.
Fish Shellfish Immunol ; 75: 181-189, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427717

RESUMO

Thioredoxin is a highly conserved protein found in both prokaryotes and eukaryotes. Reactive oxygen species (ROS) are produced in response to metabolic processes, radiation, metal oxidation, and pathological infections. High levels of ROS lead to cell death via autophagy. However, thioredoxin acts as an active regulatory enzyme in response to excessive ROS. Here, we performed in-silico analysis, immune challenge experiments, and functional assays of seahorse thioredoxin-like protein 1 (ShTXNL1). Evolutionary identification showed that ShTXNL1 protein belongs to the thioredoxin superfamily comprising 289 amino acids. It possesses an N-terminal active thioredoxin domain and C-terminal proteasome-interacting thioredoxin domain (PITH) of ShTXNL1 which is a component of 26S proteasome and binds to the matrix or cell. Pairwise alignment results showed 99.0% identity and 99.7% similarity with the sequence of Hippocampus species. Conserved thiol-disulfide cysteine residue containing Cys-X-X-Cys motif may be found in the first few amino acids in the second beta sheet starting from the N-terminus. This motif can be discovered in ShTXNL1 as 14CRPC17 and comprised two N-linked glycosylation sites at 72NISA75 and 139NESD142. According to the quantitative real-time polymerase chain reaction analysis from healthy seahorses, highest ShTXNL1 mRNA expression was observed in muscle, followed by ovary, brain, gill, and blood tissues. Moreover, significant temporal expression of ShTXNL1 was observed in gill and blood tissues after bacterial stimuli. Thus, the ShTXNL1 gene may be identified as an immunologically important gene in seahorse.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Sequência de Aminoácidos , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Masculino , Filogenia , Poli I-C/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Tiorredoxinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA