RESUMO
Two series of polydentate N,O,S-ligands containing thiourea fragments attached to a p-cresol scaffold, unsymmetrical mono-acylated bis-amines and symmetrical bis-thioureas, are obtained by common experiments. It is observed that the reaction output is strongly dependent on both bis-amine and thiocarbamic chloride substituents. The products are characterized by 1D and 2D NMR spectra in solution and by single crystal XRD. A preliminary study on the coordination abilities of selected products is performed by ITC at around neutral media.
RESUMO
In this work, we developed a visible-light-driven method for the selective synthesis of amides and N-acylureas from carboxylic acids and thioureas. This protocol was featured as avoidance of additional oxidants and transition metal catalysts, simple manipulations, low cost, broad substrate scope, and good functional group tolerance. As only oxygen serves as the oxidation reagent, this method provides a promising synthesis candidate for the formation of N-aryl amides and N-acylureas, including late-stage functionalization of complex pharmaceutical molecules and biologically active molecules.
RESUMO
A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.
RESUMO
Leishmaniasis is a group of parasitic diseases with the potential to infect more than 1 billion people; however, its treatment is still old and inadequate. In order to contribute to changing this view, this work consisted of the development of complexes derived from MI metal ions with thioureas, aiming to obtain potential leishmanicidal agents. The thiourea ligands (HLR) were obtained by reactions of p-toluenesulfohydrazide with R-isothiocyanates and were used in complexation reactions with AgI and AuI, leading to the formation of complexes of composition [M(HLR)2]X (M = Ag or Au; X = NO3- or Cl-). All compounds were characterized by FTIR, 1H NMR, UV-vis, emission spectroscopy and elemental analysis. Some representatives were additionally studied by ESI-MS and single-crystal XRD. Their properties were further analyzed by DFT calculations. Their cytotoxicity on Vero cells and the extracellular leishmanicidal activity on Leishmania infantum and Leishmania braziliensis cells were evaluated. Additionally, the interaction of the complexes with the Old Yellow enzyme of the L. braziliensis (LbOYE) was examined. The biological tests showed that some compounds present remarkable leishmanicidal activity, even higher than that of the standard drug Glucantime, with different selectivity for the two species of Leishmania. Finally, the interaction studies with LbOYE revealed that this enzyme could be one of their biological targets.
RESUMO
A series of synthesized sulfonyl thiourea derivatives (7a-o) of substituted 2-amino-4,6-diarylpyrimidines (4a-o) exhibited the remarkable inhibitory activity against some the human carbonic anhydrases (hCAs), including hCA I, II, IX, and XII isoforms. The inhibitory efficacy of synthesized sulfonyl thiourea derivatives were experimentally validated by in vitro enzymatic assays. 7a (KI = 46.14 nM), 7j (KI = 48.92 nM), and 7m (KI = 62.59 nM) (for isoform hCA I); 7f (KI = 42.72 nM), 7i (KI = 40.98 nM), and 7j (KI = 33.40 nM) (for isoform hCA II); 7j (KI = 228.5 nM), 7m (KI = 195.4 nM), and 7n (KI = 210.1 nM) (for isoform hCA IX); 7l (KI = 116.9 nM), 7m (KI = 118.8 nM), and 7n (KI = 147.2 nM) (for isoform hCA XII) in comparison with KI values of 452.1, 327.3, 437.2, and 338.9 nM, respectively, of the standard drug AAZ. These compounds also had significantly more potent inhibitory action against cytosolic isoform hCA I and tumor-associated isoforms hCA IX and hCA XII. Furthermore, the potential inhibitory compounds were subjected to in silico screening for molecular docking and molecular dynamics simulations. The results of in vitro and in silico studies revealed that compounds 7a, 7j, and 7m were the most promising derivatives in this series due to their significant effects on studied hCA I, II, IX, and XII isoforms, respectively. The results showed that the sulfonyl thiourea moiety was accommodated deeply in the active site and interacted with the zinc ion in the receptors.
Assuntos
Anidrase Carbônica I , Inibidores da Anidrase Carbônica , Humanos , Anidrase Carbônica I/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Isoenzimas/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologiaRESUMO
A series of sulfonyl thioureas 6a-q containing a benzo[d]thiazole ring with an ester functional group was synthesized from corresponding substituted 2-aminobenzo[d]thiazoles 3a-q and p-toluenesulfonyl isothiocyanate. They had remarkable inhibitory activity against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase (MAO)-A, and MAO-B. Among thioureas, several compounds had notable activity in the order of 6k > 6 h > 6c (AChE), 6j > 6g > 6k (BChE), 6k > 6g > 6f (MAO-A), and 6i > 6k > 6h (MAO-B). Compound 6k was an inhibitor of interest due to its potent or good activity against all studied enzymes, with IC50 values of 0.027 ± 0.008 µM (AChE), 0.043 ± 0.004 µM (BChE), 0.353 ± 0.01 µM (MAO-A), and 0.716 ± 0.02 µM (MAO-B). This inhibitory capacity was comparable to that of the reference drugs for each enzyme. Kinetic studies of two compounds with potential activity, 6k (against AChE) and 6j (against BChE), had shown that both 6k and 6j followed competitive-type enzyme inhibition, with Ki constants of 24.49 and 12.16 nM, respectively. Induced fit docking studies for enzymes 4EY7, 7BO4, 2BXR, and 2BYB showed active interactions between sulfonyl thioureas of benzo[d]thiazoles and the residues in the active pocket with ligands 6k, 6i, and 6j, respectively. The stability of the ligand-protein complexes while each ligand entered the active site of each enzyme (4EY7, 7BO4, 2BXR, or 2BYB) was confirmed by molecular dynamics simulations.
Assuntos
Acetilcolinesterase , Benzotiazóis , Butirilcolinesterase , Inibidores da Colinesterase , Inibidores da Monoaminoxidase , Monoaminoxidase , Tioureia , Tioureia/química , Tioureia/farmacologia , Benzotiazóis/química , Benzotiazóis/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Simulação de Acoplamento Molecular , Cinética , Desenho de Fármacos , Concentração Inibidora 50 , Monoaminoxidase/metabolismoRESUMO
As part of a program to discover novel succinate dehydrogenase inhibitor fungicides, a series of new pyrazole acyl(thio)urea compounds containing a diphenyl motif were designed and synthesized. Their structures were confirmed by 1H NMR, HRMS, and single X-ray crystal diffraction analysis. Most of these compounds possessed excellent activity against 10 fungal plant pathogens at 50 µg mL-1, especially against Rhizoctonia solani, Alternaria solani, Sclerotinia sclerotiorum, Botrytis cinerea, and Cercospora arachidicola. Interestingly, compounds 3-(difluoromethyl)-1-methyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9b, EC50 = 0.97 ± 0.18 µg mL-1), 1,3-dimethyl-N-((3',4',5'-trifluoro-[1,1'-biphenyl]-2-yl)carbamoyl)-1H-pyrazole-4-carboxamide (9a, EC50 = 2.63 ± 0.41 µg mL-1), and N-((4'-chloro-[1,1'-biphenyl]-2-yl)carbamoyl)-1,3-dimethyl-1H-pyrazole-4-carboxamide (9g, EC50 = 1.31 ± 0.15 µg mL-1) exhibited activities against S. sclerotiorum that were better than the commercial fungicide bixafen (EC50 = 9.15 ± 0.05 µg mL-1) and similar to the positive control fluxapyroxad (EC50 = 0.71 ± 0.11 µg mL-1). These compounds were not significantly phytotoxic to monocotyledonous and dicotyledonous plants. Structure-activity relationships (SAR) are discussed by substituent effects/molecular docking, and density functional theory analysis indicated that these compounds are succinate dehydrogenase inhibitors.
Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Succinato Desidrogenase , Ureia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Fungicidas Industriais/química , Pirazóis/química , Antifúngicos/farmacologiaRESUMO
INTRODUCTION: Benzothiazolamine-based bisthiourea precursors were prepared in good yields. These bisthiourea derivatives were cyclized into symmetrical Bis Methyl 2-[3-(benzothiazol-2-yl)-2-terephthaloyl-bis-4-oxo-thiazolidin-5-ylidene]acetates, by their condensation with (DMAD) dimethyl but-2-meditate in the presence of dry methanol. METHOD: All these compounds were evaluated for their biological applications. Antioxidant activities were performed by adopting a DPPH radical assay, and an in vitro enzyme inhibition assay was performed to investigate their enzyme inhibitory potential against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). RESULT: Molecular modeling and QSAR studies were performed to monitor the binding propensity of imidathiazolidinone derivatives with enzymes and DNA. Also, electronic and steric descriptors were calculated to determine the effect of structure on the activity of imidathiazolidinone derivatives. CONCLUSION: The characterization of all the synthesized compounds was done by their physical data, FT-IR, NMR and elemental analysis.
RESUMO
Naphthalene ring is present in a number of FDA-approved, commercially available medications, including naphyrone, terbinafine, propranolol, naproxen, duloxetine, lasofoxetine, and bedaquiline. By reacting newly obtained 1-naphthoyl isothiocyanate with properly modified anilines, a library of ten novel naphthalene-thiourea conjugates (5a-5j) were produced with good to exceptional yields and high purity. The newly synthesized compounds were observed for their potential to inhibit alkaline phosphatase (ALP) and scavenge free radicals. All of the investigated compounds displayed a more powerful inhibitory profile than the reference agent, KH2PO4 particularly compound 5h and 5a exhibited strong inhibitory potential against ALP with IC50 value of 0.365 ± 0.011 and 0.436 ± 0.057 µM respectively. In addition, Lineweaver-Burk plots revealed the non-competitive inhibition mode of the most powerful derivative i.e., 5h (ki value 0.5 µM). To investigate the putative binding mode of selective inhibitor interactions, molecular docking was performed. It is recommended that future research will focus on developing selective alkaline phosphatase inhibitors by modifying the structure of the 5h derivative.
RESUMO
Ureases are enzymes produced by fungi, plants, and bacteria associated with agricultural and clinical problems. The urea hydrolysis in NH3 and CO2 leads to the loss of N-urea fertilizers in soils and changes the human stomach microenvironment, favoring the colonization of H. pylori. In this sense, it is necessary to evaluate potential enzyme inhibitors to mitigate the effects of their activities and respond to scientific and market demands to produce fertilizers with enhanced efficiency. Thus, biophysical and theoretical studies were carried out to evaluate the influence of the N-alkyl chain in benzoyl-thiourea derivatives on urease enzyme inhibition. A screening based on IC50, binding constants, and theoretical studies demonstrated that BTU1 without the N-alkyl chain (R = H) was more active than other compounds, so the magnitude of the interaction was determined as BTU1 > BTU2 > BTU3 > BTU4 > BTU5, corresponding to progressively increased chain length. Thus, BTU1 was selected for interaction and soil application essays. The binding constants (Kb) for the supramolecular urease-BTU1 complex ranged from 7.95 to 5.71 × 103 M-1 at different temperatures (22, 30, and 38 °C), indicating that the preferential forces responsible for the stabilization of the complex are hydrogen bonds and van der Waals forces (ΔH = -15.84 kJ mol-1 and ΔS = -36.61 J mol-1 K-1). Theoretical and experimental results (thermodynamics, synchronous fluorescence, and competition assay) agree and indicate that BTU1 is a mixed inhibitor. Finally, urease inhibition was evaluated in the four soil samples, where BTU1 was as efficient as NBPT (based on ANOVA two-way and Tukey test with 95% confidence), with an average inhibition of 20% of urease activity. Thus, the biophysics and theoretical studies are strategies for evaluating potential inhibitors and showed that increasing the N-alkyl chain in benzoyl-thiourea derivatives did not favor urease inhibition.
Assuntos
Helicobacter pylori , Solo , Humanos , Urease/química , Urease/metabolismo , Fertilizantes/análise , Ureia/química , Helicobacter pylori/metabolismo , Inibidores Enzimáticos/farmacologia , Tioureia , BiofísicaRESUMO
We present a general efficient green method for the preparation of nitro N,N'-diaryl thioureas via a one-pot method using cyrene as a solvent with almost quantitative yields. This confirmed the viability of cyrene as a green alternative to THF in the synthesis of thiourea derivatives. After screening different reducing conditions, the nitro N,N'-diaryl thioureas were selectively reduced using Zn dust in the presence of water and acid to the corresponding amino N,N'-diaryl thioureas. These were then used to test the installation of the Boc-protected guanidine group with N,N'-bis-Boc protected pyrazole-1-carboxamidine as a guanidylating reagent not requiring mercury(II) activation. Finally, the TFA salts obtained after Boc-deprotection of two sample compounds were tested for their affinity towards DNA showing no binding.
Assuntos
Guanidinas , Tioureia , Guanidina , Tioureia/químicaRESUMO
Macathioureas A-D (1-4), four new thiourea derivatives with a carbamothioylpyrrolidine-2-carboxamide framework, were isolated from the roots of Lepidium meyenii (Maca) collected from Qujing, Yunnan Province of China. Their structures were identified based on extensive spectroscopic data, including 1D NMR, 2D NMR, and HRESIMS techniques. Their absolute configurations were assigned as 7S by the comparison of the experimental and predicted electronic circular dichroism (ECD) spectra. All the thiourea analogues were tested for their cytotoxicities against five human cancer cell lines. However, no significant activities were detected at concentrations up to 40 µM.
Assuntos
Lepidium , Humanos , Lepidium/química , China , Estrutura Molecular , Raízes de Plantas/química , Linhagem Celular Tumoral , Extratos Vegetais/químicaRESUMO
Thiourea S-oxides can be viewed as formal analogs of the currently unknown diamino-substituted Criegee intermediates (urea O-oxides). However, the preparation of such S-oxides is rather challenging, and the direct oxidation of thioureas typically only leads to formation of desulfurized products. Employing the accurate revDSD-PBEP86-D4 double hybrid density functional, it was found that the peracid mediated oxidation of thiourea S-oxides exhibits a lower reaction barrier than the oxidation of the corresponding thiourea itself in contrast to most other ordinary thioketones. The undesired overoxidation reactivity, which is associated with strong π-donation from the thiourea's nitrogen atoms, can be partially suppressed by introduction of bulky substituents and the utilization of protic solvents. In this regard, we managed to prepare two sterically encumbered thiourea S-oxides in isolated yields of 35-40 %. The S-oxides are stable in the solid state and in alcoholic solutions at room temperature for extended periods of time, but swiftly decompose in aprotic solvents by disproportionation. A dimesityl-substituted thiourea S-oxide complexed with residual mCBA could be characterized by means of X-ray crystallography, confirming the importance of hydrogen bonding in the stabilization of the amino-substituted C=S+ -O- moiety.
RESUMO
(Thio)-urea-containing bifunctional quaternary ammonium salts emerged as powerful non-covalently interacting organocatalysts over the course of the last decade. The most commonly employed catalysts in this field are either based on Cinchona alkaloids, α-amino acids, or trans-cyclohexane-1,2-diamine. Our group has been heavily engaged in the design and use of such catalysts, i. e. trans-cyclohexane-1,2-diamine-based ones for around 10â years now, and it is therefore the intention of this short personal account to provide an overview of the, at least in our opinion, most significant and pioneering achievements in this field by looking on catalyst design and asymmetric method development, with a special focus on our own contributions.
Assuntos
Compostos de Amônio Quaternário , Ureia , Estereoisomerismo , Estrutura Molecular , Compostos de Amônio Quaternário/química , CatáliseRESUMO
Synthesis of thiazolidinone based on quinolone moiety was established starting from 4-hydroxyquinol-2-ones. The strategy started with the reaction of ethyl bromoacetate with 4-hydroxyquinoline to give the corresponding ethyl oxoquinolinyl acetates, which reacted with hydrazine hydrate to afford the hydrazide derivatives. Subsequently, hydrazides reacted with isothiocyanate derivatives to give the corresponding N,N-disubstituted thioureas. Finally, on subjecting the N,N-disubstituted thioureas with dialkyl acetylenedicarboxylates, cyclization occurred, and thiazolidinone derivatives were obtained in good yields. The two series based on quinolone moiety, one containing N,N-disubstituted thioureas and the other containing thiazolidinone functionalities, were screened for their in vitro urease inhibition properties using thiourea and acetohydroxamic acid as standard inhibitors. The inhibition values of the synthesized thioureas and thiazolidinones exhibited moderate to good inhibitory effects. The structure-activity relationship revealed that N-methyl quinolonyl moiety exhibited a superior effect, since it was proved to be the most potent inhibitor in the present series achieving (IC50 = 1.83 ± 0.79 µM). The previous compound exhibited relatively much greater activity, being approximately 12-fold more potent than thiourea and acetohydroxamic acid as references. Molecular docking analysis showed a good protein-ligand interaction profile against the urease target (PDBID: 4UBP), emphasizing the electronic and geometric effect of N,N-disubstituted thiourea.
Assuntos
Quinolonas , Urease , Tioureia , Simulação de Acoplamento Molecular , Ligantes , Inibidores Enzimáticos/farmacologia , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Hidrazinas , Isotiocianatos , Estrutura MolecularRESUMO
Thiyl radicals offer unique catalytic patterns for the direct covalent activation of alkenes. However, important limitations in terms of structural diversity and handling have hampered the routine use of thiyl radicals in covalent radical catalysis. Herein, we report a new class of cationic sulfur-centered radicals to achieve covalent radical catalysis. Their generation from highly modular thioureas by photoredox catalysis make their utilization very simple and reliable. The synthetic potential and the versatility of the catalytic system were finally evaluated in a (3+2)-radical cascade between vinylcyclopropanes and olefins.
RESUMO
Thioureas and their derivatives are organosulfur compounds having excellent biological and non-biological applications. These compounds contain S- and N-, which are nucleophilic and allow for establishing inter-and intramolecular hydrogen bonding. These characteristics make thiourea moiety a very important chemosensor to detect various environmental pollutants. This article covers a broad range of thioureas and their derivatives that are used for highly sensitive, selective, and simple fluorimetric (turn-off and turn-on), and colorimetric chemosensors for the detection and determination of different types of anions, such as CN-, AcO-, F-, ClO- and citrate ions, etc., and neutral analytes such as ATP, DCP, and Amlodipine, etc., in biological, environmental, and agriculture samples. Further, the sensing performances of thioureas-based chemosensors have been compared and discussed, which could help the readers for the future design of organic fluorescent and colorimetric sensors to detect anions and neutral analytes. We hope this study will support the new thoughts to design highly efficient, selective, and sensitive chemosensors to detect different analytes in biological, environmental, and agricultural samples.
RESUMO
A simple and eco-friendly nano Fe2O3 heterogeneous catalytic system is described for the synthesis of acyl thiourea derivatives from corresponding in situ generated acyl isothiocyanates and amino acid esters in acetone obtained in good yields. The structures of synthesized acyl thioureas were confimed by 1H NMR, 13C NMR, mass, and FTIR analysis. Fe2O3 NPs has been prepared via a solution combustion route using ascorbic acid as the reducing agent and ferric nitrate as the source of iron. The prepared nano material has been characterized by XRD, SEM, UV-Visible, and FTIR analysis. More prominently, the Fe2O3 and other impurities are removed though a simple work-up and the material prepared shows to be effective in catalyzing the conversion of reactants to products in good yields. Further, some of the synthesized acyl thioureas were evaluated for in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli.
Assuntos
Compostos Férricos , Tioureia , Bactérias , Catálise , Compostos Férricos/farmacologia , Staphylococcus aureus , Tioureia/farmacologiaRESUMO
The synthesis and single-crystal X-ray structures of three N,N,N'-tris-ubstituted thio-ureas are reported, namely N,N,N'-tri-benzyl-thio-urea, C22H22N2S (1), N-methyl-N,N'-di-phenyl-thio-urea, C14H14N2S (2), and N,N-di-n-butyl-N'-phenylthio-urea, C15H24N2S (3). The influence of the different substituents on the thio-ureas is clear from the delocalization of the thio-urea C-N and C=S bonds, while the crystal structures show infinite chains of N,N,N'-tri-benzyl-thio-urea (1), hydrogen-bonded pairs of N-methyl-N,N'-di-phenyl-thio-urea (2) and hexa-mer ring assemblies of N,N-di-n-butyl-N'-phenylthio-urea (3) mol-ecules. The above-mentioned compounds were synthesized via a mild, general procedure, readily accessible precursors and with a high yield, providing straightforward access to a whole library of thio-ureas.
RESUMO
BACKGROUND: Thiazole-containing compounds are widely found in natural products as well as synthetic sources. Many thiazole-based compounds possess a broad spectrum of bioactivities, and some of them are well-known drugs in the markets. The use of thiazole derivatives in other fields such as organic materials, cosmetics, and organic synthesis has also been widely reported. Due to a wide range of applicability, the synthesis of thiazole-containing compounds has attracted extensive interest from chemists, and many studies in the synthesis of thiazole skeleton have been reported recently. OBJECTIVE: This review article will discuss recent studies in the synthesis of thiazoles (from2012). Besides the well-established Hantzsch thiazole synthesis, a large number of novel methods have been developed for the synthesis of thiazole derivatives. In most cases, reaction mechanisms have also been described. CONCLUSION: The synthesis of thiazole derivatives has drawn great attention from chemists, and many studies in the synthesis of these heterocycles have been reported recently. The classical method, the Hantzsch thiazole synthesis has received great research interest from chemists. Moreover, many new methods have been established to synthesize thiazole-derived compounds. Unquestionably, more and more approaches to access thiazole skeleton will appear in the literature. The application of well-established thiazole synthesis methods to the synthesis of drugs, organic materials, and natural products will almost certainly be studied.