Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Methods Mol Biol ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37801255

RESUMO

Natural killer (NK) cells are a part of a sophisticated immune system that is necessary for the skin because it is a crucial organ that is continually exposed to environmental influences. Recent studies have shown that NK cell incorporation into three-dimensional (3D) organotypic culture systems for human skin stem cells provides a physiologically relevant environment to study the interactions between immune cells and skin cells, making it a powerful tool for simulating skin diseases and researching these interactions. It has been shown that adding NK cells to 3D organotypic culture systems can improve keratinocyte differentiation and control inflammation in a variety of skin conditions, including psoriasis. In order to increase our knowledge of skin diseases and immune cell interactions, this work intends to propose an optimum approach for adding NK cells to a 3D organotypic culturing system for human skin stem cells. By better comprehending these relationships, researchers hope to develop novel treatments for skin diseases that are more effective and cause fewer side effects than current treatments. To completely understand the mechanisms underlying these interactions and to create new treatments for skin diseases, more research is required. In conclusion, NK cell integration into 3D organotypic culture systems offers a potent tool to investigate immune cell interactions with skin cells in a physiologically appropriate setting, which may result in major improvements in the treatment of skin diseases.

2.
Stem Cell Res Ther ; 13(1): 368, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902913

RESUMO

BACKGROUND: Salivary glands produce saliva that play essential roles in digestion and oral health. Derivation of salivary gland organoids from pluripotent stem cells (PSCs) provides a powerful platform to model the organogenesis processes during development. A few studies attempted to differentiate PSCs into salivary gland organoids. However, none of them could recapitulate the morphogenesis of the embryonic salivary glands, and most of the protocols involved complicated manufacturing processes. METHODS: To generate PSC-derived salivary gland placodes, the mouse embryonic stem cells were first differentiated into oral ectoderm by treatment with BMP4 on day 3. Retinoic acid and bFGF were then applied to the cultures from day 4 to day 6, followed by a 4-day treatment of FGF10. The PSC-derived salivary gland placodes on day 10 were transplanted to kidney capsules to determine the regenerative potential. Quantitative reverse transcriptase-polymerase chain reaction, immunofluorescence, and RNA-sequencing were performed to identify the PSC-derived SG placodes. RESULTS: We showed that step-wise treatment of retinoic acid and FGF10 promoted the differentiation of PSCs into salivary gland placodes, which can recapitulate the early morphogenetic events of their fetal counterparts, including the thickening, invagination, and then formed initial buds. The PSC-derived salivary gland placodes also differentiated into developing duct structures and could develop to striated and excretory ducts when transplanted in vivo. CONCLUSIONS: The present study provided an easy and safe method to generate salivary gland placodes from PSCs, which offered possibilities for studying salivary gland development in vitro and developing new cell therapies.


Assuntos
Células-Tronco Pluripotentes , Tretinoína , Animais , Diferenciação Celular , Fator 10 de Crescimento de Fibroblastos/farmacologia , Camundongos , Organoides , Glândulas Salivares , Tretinoína/farmacologia
3.
World J Pediatr ; 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35759110

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder with a birth incidence of 1:6000 in the United States that is characterized by the growth of non-cancerous tumors in multiple organ systems including the brain, kidneys, lungs, and skin. Importantly, TSC is also associated with significant neurological manifestations including epilepsy, TSC-associated neuropsychiatric disorders, intellectual disabilities, and autism spectrum disorder. Mutations in the TSC1 or TSC2 genes are well-established causes of TSC, which lead to TSC1/TSC2 deficiency in organs and hyper-activation of the mammalian target of rapamycin signaling pathway. Animal models have been widely used to study the effect of TSC1/2 genes on the development and function of the brain. Despite considerable progress in understanding the molecular mechanisms underlying TSC in animal models, a human-specific model is urgently needed to investigate the effects of TSC1/2 mutations that are unique to human neurodevelopment. DATA SOURCES: Literature reviews and research articles were published in PubMed-indexed journals. RESULTS: Human-induced pluripotent stem cells (iPSCs), which capture risk alleles that are identical to their donors and have the capacity to differentiate into virtually any cell type in the human body, pave the way for the empirical study of previously inaccessible biological systems such as the developing human brain. CONCLUSIONS: In this review, we present an overview of the recent progress in modeling TSC with human iPSC models, the existing limitations, and potential directions for future research.

4.
Cell Transplant ; 31: 9636897221106996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727010

RESUMO

To increase the potential and effectiveness of three-dimensional (3D) mesenchymal stem cells (MSCs) for clinical applications, this study explored the effects of short cryo-temperature pretreatment on MSC function. Adipose-derived MSCs (A-MSCs) were cultured via the ordinary monolayer method and 3D hanging drop spheroid method. When the cells adhered to the wall or formed a spheroid, they were subjected to hypothermic stress at 4°C for 1 h and then divided into three recovery periods at 37°C, specifically 0, 12, and 24 h. The control group was not subjected to any treatment throughout the study. Monolayer and 3D spheroid A-MSCs were analyzed via RNA sequencing after hypothermic stress at 4°C for 1 h. Subsequently, each group of cells was collected and subjected to phenotype identification via flow cytometry, and mRNA expression was detected via reverse transcription-quantitative polymerase chain reaction analysis. Western blot analysis was performed to analyze the PI3K-AKT signaling pathway in A-MSCs. The effects of A-MSCs on angiogenesis in vivo were examined using a chick chorioallantoic membrane assay. Transwell assays were performed to determine whether the culture supernatant from each group could induce the chemotaxis of human umbilical vein endothelial cells (HUVECs). Three-dimensional spheroid culture did not change the phenotype of A-MSCs. The expression of fibroblast growth factors, hepatocyte growth factors, and other angiogenesis-related factors in A-MSCs was upregulated. A-MSCs subjected to hypothermic stress promoted angiogenesis under both monolayer and 3D spheroid cultures. Moreover, the chemotaxis of HUVECs to the 3D spheroid culture supernatant increased substantially. Short cryo-temperature pretreatment could stimulate 3D spheroid A-MSCs and activate the PI3K-AKT pathway. This approach has the advantages of promoting angiogenesis and maintaining cell viability.


Assuntos
Células-Tronco Mesenquimais , Proteínas Proto-Oncogênicas c-akt , Indutores da Angiogênese/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temperatura
5.
Rev. peru. med. exp. salud publica ; 39(2): 227-235, abr.-jun. 2022. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1395048

RESUMO

RESUMEN Los organoides son estructuras miniaturizadas, generadas principalmente a partir de células madre pluripotentes inducidas, que se cultivan en el laboratorio conservando sus características innatas o adquiridas. Tienen el potencial de reproducir procesos de desarrollo biológico, modelar procesos patológicos que permitirán el descubrimiento de nuevos fármacos y propicien la medicina regenerativa. Sin embargo, estas experiencias requieren perfeccionamiento constante porque pueden haberse realizado variaciones en la constitución de estos órganos. Por ello, el presente artículo tiene como objetivo revisar la información actualizada sobre organoides y sus procesos experimentales básicos y recientes, empezando por la gastrulación, para tratar de imitar, en lo posible, la formación de las tres capas: ectodermo, mesodermo y endodermo, incluyendo los factores que intervienen en la inducción, diferenciación y maduración en la generación de estos organoides. Asimismo, el diseño y preparación de medios de cultivo altamente especializados que permitan obtener el órgano seleccionado con la mayor precisión y seguridad. Se realizó una búsqueda de artículos originales y de revisión publicados en PubMed, Nature y Science. Los artículos se seleccionaron por sus resúmenes y por su texto completo. Las conclusiones de este articulo destacan las ventajas futuras en el uso y aplicaciones de los organoides.


ABSTRACT Organoids are tiny structures, mainly generated from induced pluripotent stem cells, which are cultured in the laboratory while retaining their innate or acquired characteristics. They have the potential to reproduce biological development processes, model pathological processes that will enable the discovery of new drugs and promote regenerative medicine. However, these processes require constant improvement because variations may have occurred in the constitution of the organs. Therefore, this article aims to review updated information on organoids and their basic and recent experimental processes, starting with gastrulation, in an attempt to mimic, as much as possible, the formation of the three layers: ectoderm, mesoderm and endoderm; as well as the information regarding the factors involved in the induction, differentiation and maturation during the generation of organoids. Likewise, the design and preparation of highly specialized culture media that allow obtaining the selected organ with the highest precision and safety. We searched for original and review articles published in PubMed, Nature and Science. Articles were selected for their abstracts and full text. The conclusions of this article highlight the future advantages in the use and applications of organoids.


Assuntos
Organoides , Transdução de Sinais , Diferenciação Celular , Gastrulação , Células-Tronco Pluripotentes Induzidas
6.
Adv Sci (Weinh) ; 9(3): e2100031, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813178

RESUMO

The placenta has a lifelong impact on the health of both the mother and fetus. Despite its significance, human early placental development is poorly understood due to the limited models. The models that can reflect the key features of early human placental development, especially at early gestation, are still lacking. Here, the authors report the generation of trophoblast-like tissue model from human pluripotent stem cells (hPSCs) in three-dimensional (3D) cultures. hPSCs efficiently self-organize into blastocoel-like cavities under defined conditions, which produce different trophoblast subtypes, including cytotrophoblasts (CTBs), syncytiotrophoblasts (STBs), and invasive extravillous trophoblasts (EVTs). The 3D cultures can exhibit microvilli structure and secrete human placenta-specific hormone. Single-cell RNA sequencing analysis further identifies the presence of major cell types of trophoblast-like tissue as existing in vivo. The results reveal the feasibility to establish 3D trophoblast-like tissue model from hPSCs in vitro, which is not obtained by monolayer culture. This new model system can not only facilitate to dissect the underlying mechanisms of early human placental development, but also imply its potential for study in developmental biology and gestational disorders.


Assuntos
Placenta/metabolismo , Placentação/fisiologia , Células-Tronco Pluripotentes/metabolismo , Trofoblastos/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Humanos , Gravidez
7.
Cancers (Basel) ; 13(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804802

RESUMO

Collective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D. Without external stimulus, large (600 µm) T47D microtumors exhibited tumor-intrinsic hypoxia and directional migration, while small (150 µm), non-hypoxic microtumors exhibited radial migration only when exposed to the secretome of large microtumors. To investigate the mechanisms underlying hypoxia- and secretome-induced directional vs. radial migration modes, we performed differential gene expression analysis of hypoxia- and secretome-induced migratory microtumors compared with non-hypoxic, non-migratory small microtumors as controls. We propose unique gene signature sets related to tumor-intrinsic hypoxia, hypoxia-induced epithelial-mesenchymal transition (EMT), as well as hypoxia-induced directional migration and secretome-induced radial migration. Gene Set Enrichment Analysis (GSEA) and protein-protein interaction (PPI) network analysis revealed enrichment and potential interaction between hypoxia, EMT, and migration gene signatures for the hypoxia-induced directional migration. In contrast, hypoxia and EMT were not enriched in the secretome-induced radial migration, suggesting that complete EMT may not be required for radial migration. Survival analysis identified unique genes associated with low survival rate and poor prognosis in TCGA-breast invasive carcinoma dataset from our tumor-intrinsic hypoxia gene signature (CXCR4, FOXO3, LDH, NDRG1), hypoxia-induced EMT gene signature (EFEMP2, MGP), and directional migration gene signature (MAP3K3, PI3K3R3). NOS3 was common between hypoxia and migration gene signature. Survival analysis from secretome-induced radial migration identified ATM, KCNMA1 (hypoxia gene signature), and KLF4, IFITM1, EFNA1, TGFBR1 (migration gene signature) to be associated with poor survival rate. In conclusion, our unique 3D cultures with controlled microenvironments respond to different microenvironmental factors, tumor-intrinsic hypoxia, and secretome by adopting distinct collective migration modes and their gene expression analysis highlights the phenotypic heterogeneity and plasticity of epithelial cancer cells.

8.
J Appl Toxicol ; 40(9): 1248-1258, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32319113

RESUMO

Next-generation tobacco products and nicotine delivery systems such as heat-not-burn tobacco products and electronic cigarettes, the usage of which is expected to have a beneficial impact on public health, have gained popularity over the past decade. However, the risks associated with the long-term use of such products are still incompletely understood. Although the risks of these products should be clarified through epidemiological studies, such studies are normally performed based on each product category, not product-by-product. Therefore, investigation of the risk on a product-by-product basis is important to provide specific scientific evidence. In the current study, we performed the 40-day repeated exposure of in vitro human bronchial epithelial tissues to cigarette smoke (CS) or vapor from our proprietary novel tobacco vapor product (NTV). In addition, tissue samples exposed to CS were switched to NTV or CS exposure was stopped at 20 days to reflect a situation where smokers switched to NTV or ceased to smoke. All tissue samples were assessed in terms of toxicity, inflammation and transcriptomic alterations. Tissue samples switched to NTV and the cessation of exposure samples showed recovery from CS-induced damage although there was a time-course difference. Moreover, repeated exposure to NTV produced negligible effects on the tissue samples while CS produced cumulative effects. Our results suggest that the use of NTV, including switching to NTV from cigarette smoking, has fewer effects on bronchial epithelial tissues than continuing smoking.


Assuntos
Aerossóis/toxicidade , Brônquios/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Nicotina/toxicidade , Fumaça , Humanos , Fatores de Risco
9.
Artigo em Inglês | MEDLINE | ID: mdl-32328489

RESUMO

The development of new high-tech systems for screening anticancer drugs is one of the main problems of preclinical screening. Poor correlation between preclinical in vitro and in vivo data with clinical trials remains a major concern. The choice of the correct tumor model at the stage of in vitro testing provides reduction in both financial and time costs during later stages due to the timely screening of ineffective agents. In view of the growing incidence of oncology, increasing the pace of the creation, development and testing of new antitumor agents, the improvement and expansion of new high-tech systems for preclinical in vitro screening is becoming very important. The pharmaceutical industry presently relies on several widely used in vitro models, including two-dimensional models, three-dimensional models, microfluidic systems, Boyden's chamber and models created using 3D bioprinting. This review outlines and describes these tumor models including their use in research, in addition to their characteristics. This review therefore gives an insight into in vitro based testing which is of interest to researchers and clinicians from differing fields including pharmacy, preclinical studies and cell biology.

10.
Reprod Sci ; 27(6): 1304-1317, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32016804

RESUMO

Multiple in vivo animal models for uterine leiomyoma do not adequately represent human disease based on etiology, molecular phenotype, or limited fixed life span. Our objective was to develop a xenograft model with sustained growth, by transplanting a well-established actively growing three-dimensional (3D) cell culture of human leiomyoma and myometrium in NOD/SCID ovariectomized female mice. We demonstrated continued growth to at least 12 weeks and the overexpression of extracellular matrix (ECM). Further, we confirmed maintenance of hormonal response that is comparable to human disease in situ. Leiomyoma xenografts under hormonal treatment demonstrated 8 to12-fold increase of volume over the xenografts not treated with hormones. Estradiol-treated xenografts were more cellular as compared to progesterone or combination milieu, at the end of 8-week time frame. There was also a non-statistically significant 2-4 mm3 increase in volume between 8-week and 12-week xenografts with higher matrix to cell ratio in 12-week xenografts compared to the 8-week and placebo xenografts. Increased expression of ECM proteins, fibronectin, versican, and collagens, indicated an actively growing cell matrix formation in the xenografts. In conclusion, we have developed and validated a xenograft in vivo model for uterine leiomyoma that shares the genomic and proteomic characteristics with the human surgical specimens of origin and recapitulates the most important features of the human tumors, the aberrant ECM expression that defines the leiomyoma phenotype and gonadal hormone regulation. Using this model, we demonstrated that combination of estradiol and progesterone resulted in increased cellularity and ECM production leading to growth of the xenograft tumors.


Assuntos
Estradiol/administração & dosagem , Leiomioma/patologia , Miométrio/patologia , Progesterona/administração & dosagem , Neoplasias Uterinas/patologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos NOD , Miométrio/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
World J Stem Cells ; 11(12): 1065-1083, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31875869

RESUMO

Three-dimensional (3D) culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures. In cancer and stem cell research, the natural cell characteristics and architectures are closely mimicked by the 3D cell models. Thus, the 3D cell cultures are promising and suitable systems for various proposes, ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives. This review provides a comprehensive compendium of recent advancements in culturing cells, in particular cancer and stem cells, using 3D culture techniques. The major approaches highlighted here include cell spheroids, hydrogel embedding, bioreactors, scaffolds, and bioprinting. In addition, the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed, and the prominent studies of 3D cell culture systems were discussed.

12.
ACS Appl Mater Interfaces ; 11(31): 28125-28137, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356041

RESUMO

Hybrid interfaces between living cells and nano/microstructured scaffolds have huge application potential in biotechnology, spanning from regenerative medicine and stem cell therapies to localized drug delivery and from biosensing and tissue engineering to neural computing. However, 3D architectures based on semiconducting polymers, endowed with responsivity to visible light, have never been considered. Here, we apply for the first time a push-coating technique to realize high aspect ratio polymeric pillars, based on polythiophene, showing optimal biocompatibility and allowing for the realization of soft, 3D cell cultures of both primary neurons and cell line models. HEK-293 cells cultured on top of polymer pillars display a remarkable change in the cell morphology and a sizable enhancement of the membrane capacitance due to the cell membrane thinning in correspondence to the pillars' top surface, without negatively affecting cell proliferation. Electrophysiology properties and synapse number of primary neurons are also very well preserved. In perspective, high aspect ratio semiconducting polymer pillars may find interesting applications as soft, photoactive elements for cell activity sensing and modulation.


Assuntos
Técnicas de Cultura de Células , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Neurônios/metabolismo , Semicondutores , Animais , Células HEK293 , Humanos , Neurônios/citologia , Ratos
13.
Adv Exp Med Biol ; 1123: 151-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016599

RESUMO

Epithelial damage in the salivary gland (SG) resulting in irreversible dry mouth can be commonly induced by gamma radiation therapy. This radiation depletes the SG stem/progenitor cell niche slowing healing and natural gland regeneration. Biologists have been focused in understanding the development and differentiation of epithelial stem and progenitor cell niches during SG organogenesis. These organogenesis studies gave insights into novel cell-based therapies to recreate the three-dimensional (3D) salivary gland (SG) organ, recapitulate the SG native physiology, and restore saliva secretion. Such therapeutical strategies apply techniques that assemble, in a 3D organotypic culture, progenitor and stem cell lines to develop SG organ-like organoids or mini-transplants. Future studies will employ a combination of organoids, decellularized matrices, and smart biomaterials to create viable and functional SG transplants to repair the site of SG injury and reestablish saliva production.


Assuntos
Medicina Regenerativa/tendências , Glândulas Salivares/crescimento & desenvolvimento , Células-Tronco/citologia , Engenharia Tecidual/tendências , Diferenciação Celular , Humanos , Organoides , Glândulas Salivares/efeitos da radiação , Xerostomia/terapia
14.
Stem Cell Res Ther ; 9(1): 181, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973296

RESUMO

BACKGROUND: Skin injuries in horses frequently lead to chronic wounds that lack a keratinocyte cover essential for healing. The limited proliferation of equine keratinocytes using current protocols has limited their use for regenerative medicine. Previously, equine induced pluripotent stem cells (eiPSCs) have been produced, and eiPSCs could be differentiated into equine keratinocytes suitable for stem cell-based skin constructs. However, the procedure is technically challenging and time-consuming. The present study was designed to evaluate whether conditional reprogramming (CR) could expand primary equine keratinocytes rapidly in an undifferentiated state but retain their ability to differentiate normally and form stratified epithelium. METHODS: Conditional reprogramming was used to isolate and propagate two equine keratinocyte cultures. PCR and FISH were employed to evaluate the equine origin of the cells and karyotyping to perform a chromosomal count. FACS analysis and immunofluorescence were used to determine the purity of equine keratinocytes and their proliferative state. Three-dimensional air-liquid interphase method was used to test the ability of cells to differentiate and form stratified squamous epithelium. RESULTS: Conditional reprogramming was an efficient method to isolate and propagate two equine keratinocyte cultures. Cells were propagated at the rate of 2.39 days/doubling for more than 40 population doublings. A feeder-free culture method was also developed for long-term expansion. Rock-inhibitor is critical for both feeder and feeder-free conditions and for maintaining the proliferating cells in a stem-like state. PCR and FISH validated equine-specific markers in the cultures. Karyotyping showed normal equine 64, XY chromosomes. FACS using pan-cytokeratin antibodies showed a pure population of keratinocytes. When ROCK inhibitor was withdrawn and the cells were transferred to a three-dimensional air-liquid culture, they formed a well-differentiated stratified squamous epithelium, which was positive for terminal differentiation markers. CONCLUSIONS: Our results prove that conditional reprogramming is the first method that allows for the rapid and continued in vitro propagation of primary equine keratinocytes. These unlimited supplies of autologous cells could be used to generate transplants without the risk of immune rejection. This offers the opportunity for treating recalcitrant horse wounds using autologous transplantation.


Assuntos
Diferenciação Celular/fisiologia , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Queratinócitos/citologia , Animais , Células Cultivadas , Epiderme/metabolismo , Cavalos , Queratinócitos/metabolismo , Masculino
15.
ACS Biomater Sci Eng ; 4(2): 314-323, 2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418726

RESUMO

Immunotherapy has emerged during the past two decades as an innovative and successful form of cancer treatment. However, frequently, mechanisms of actions are still unclear, predictive markers are insufficiently characterized, and preclinical assays for innovative treatments are poorly reliable. In this context, the analysis of tumor/immune system interaction plays key roles, but may be unreliably mirrored by in vivo experimental models and standard bidimensional culture systems. Tridimensional cultures of tumor cells have been developed to bridge the gap between in vitro and in vivo systems. Interestingly, defined aspects of the interaction of cells from adaptive and innate immune systems and tumor cells may also be mirrored by 3D cultures. Here we review in vitro models of cancer/immune cell interaction and we propose that updated technologies might help develop innovative treatments, identify biologicals of potential clinical relevance, and select patients eligible for immunotherapy treatments.

16.
J Orthop Res ; 36(1): 10-21, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28718947

RESUMO

The purpose of this review is to provide a brief overview of bioreactor-based culture systems as alternatives to conventional two- and three-dimensional counterparts. The role, challenges, and future aspirations of bioreactors in the musculoskeletal field (e.g., cartilage, intervertebral disc, tendon, and bone) are discussed. Bioreactors, by recapitulating physiological processes, can be used effectively as part of the initial in vitro screening, reducing that way the number of animal required for preclinical assessment, complying with the 3R principles and, in most cases, allowing working with human tissues. The clinical significance of bioreactors is that, by providing more physiologically relevant conditions to customarily used two- and three-dimensional cultures, they hold the potential to provide a testing platform that is more predictable of a whole tissue response, thereby facilitating the screening of treatments before the initiation of clinical trials. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:10-21, 2018.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Tecidos , Alternativas aos Testes com Animais , Animais , Cartilagem/citologia , Cartilagem/fisiologia , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Ligamentos/citologia , Ligamentos/fisiologia , Tendões/citologia , Tendões/fisiologia , Engenharia Tecidual
17.
Methods Mol Biol ; 1502: 129-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27032948

RESUMO

Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable for the generation of human 3D neural in vitro models, which can be used to feed high-throughput screening platforms, contributing to expand the available in vitro tools for drug screening and toxicological studies.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Diferenciação Celular , Células-Tronco Neurais/citologia , Perfusão/instrumentação , Agregação Celular , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Células Cultivadas , Desenho de Equipamento , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurogênese , Perfusão/métodos
18.
Oncotarget ; 7(16): 22819-33, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27009841

RESUMO

Retinal pigment epithelium (RPE) transplantation is a particularly promising treatment of retinal degenerative diseases affecting RPE-photoreceptor complex. Embryonic stem cells (ESCs) provide an abundant donor source for RPE transplantation. Herein, we studied the time-course characteristics of RPE cells derived from three-dimensional human ESCs cultures (3D-RPE). We showed that 3D-RPE cells possessed morphology, ultrastructure, gene expression profile, and functions of authentic RPE. As differentiation proceeded, 3D-RPE cells could mature gradually with decreasing proliferation but increasing functions. Besides, 3D-RPE cells could form polarized monolayer with functional tight junction and gap junction. When grafted into the subretinal space of Royal College of Surgeons rats, 3D-RPE cells were safe and efficient to rescue retinal degeneration. This study showed that 3D-RPE cells were a new donor for cell therapy of retinal degenerative diseases.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/transplante , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco/métodos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Xenoenxertos , Humanos , Ratos
19.
J Tissue Eng Regen Med ; 10(8): 627-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-23897780

RESUMO

Despite the high prevalence of skin conditions in the horse, there is a dearth of literature on the culture and biology of equine skin cells, and this is partially attributable to the lack of suitable in vitro skin models. The objective of this study was to develop a three-dimensional (3D) culture system that would support the proliferation and differentiation of equine keratinocytes, similar to that observed in natural epidermis. Cell monolayers were obtained from explants of equine skin and serially passaged as highly pure keratinocyte populations (> 95% of cells), based on their expression of cytokeratins, including CK-5 and CK-14, which are associated in vivo with proliferating keratinocyte populations. Explant-derived keratinocytes were seeded into Alvetex™ 3D tissue scaffolds for 30 days under conditions that promote cell differentiation. Ultrastructural, immunohistochemical and biochemical analyses revealed that keratinocytes within scaffolds were able to proliferate and attain tissue polarity, including differentiation into basal and suprabasal layers. The basal layer contained distinct cuboidal cells with large nuclei and stained for proliferative markers such as CK-5 and CK-14. In contrast, the suprabasal layers consisted of cells with distinct polyhedral morphology, abundant cytoplasmic processes and desmosomes indicative of stratum spinosum and distinct flattened cornified cells that expressed involucrin, a marker of terminal differentiation. Thus, keratinocytes derived from primary equine skin explants were able to attain epidermal-like architecture in culture. This novel system could provide a very useful tool for modelling skin diseases, drug testing/toxicity studies and, potentially, equine regenerative medicine. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antígenos de Diferenciação/biossíntese , Técnicas de Cultura de Células/métodos , Proliferação de Células , Epiderme/metabolismo , Queratinócitos/metabolismo , Animais , Células Cultivadas , Células Epidérmicas , Cavalos , Queratinócitos/citologia
20.
Methods Cell Biol ; 129: 37-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175432

RESUMO

Three-dimensional (3D) cell cultures have long been recognized as a tool for the study of tissue architecture, polarity, and invasion. However, only recently these systems have been used to study centrosome and cilia functions. Studying these organelles in 3D cultures has elucidated new functions that otherwise would have been overlooked, demonstrating the value of these experimental systems to the field. Here we describe a culture method to study mammary epithelial cells in a 3D environment.


Assuntos
Centrossomo/ultraestrutura , Técnicas de Cultura de Células , Linhagem Celular , Meios de Cultura/química , Humanos , Hidrogéis/química , Glândulas Mamárias Humanas/citologia , Microscopia de Fluorescência , Esferoides Celulares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA