RESUMO
To quantitatively analyze the regularity and characteristics of tillering dynamics of rice at different sowing dates. In this paper, the whole process of rice tillering was decomposed into two aspects: tiller occurrence and tiller extinction, and two Logistic functions were used to describe them respectively, so as to establish a dynamic tillering model in rice based on double Logistic function (Dynamic Tillering Model, DTM). Then, according to DTM, dynamic tillering indexes (DTIs) were defined and their calculation formulas were derived. Finally, the characteristics and laws of rice tillering dynamic response to sowing dates were analyzed using DTM and DTIs with the observed tillering data of three rice varieties, (Hui-Liangyou 898 (HLY898), Y-Liangyou 900 (YLY900) and Y-Liangyou 911 (YLY911)), in six sowing dates (March 15, March 20, March 25, March 30, April 5, April 10). The results show that: 1. The model fits well. The normalized RMSE (RMSEn) of the DTM fitted to the observed tillering data of different rice varieties sown at different times were all less than 10 %, and their mean values were less than 5 %. 2.The variation degree of DTIs under the influence of sowing dates had certain consistency among the three rice varieties. the inherent rate of tillering (R it ), the maximum tillering rate (R mt ), the maximum tillers extinction rate (R me ) and the duration of tillering (D t ) varied greatly, while the total number of grow tillers (N g ), the peak time of tillering (T pt ), the peak time of tillers extinction (T pe ) and the end time of tillering (T et ) had smaller variation. 3. The eight DTIs, the inherent rate of tillering (R it ), the duration of tillering (D t ), the maximum tillering rate (R mt ), the number of retained tillers (N r ), the peak time of tillering (T pt ), the end time of tillering (T et ), the start time of tillers extinction (T se ) and duration of tillers extinction (D e ), had a consistent linear response to the sowing dates among the three rice varieties. 4. Under different sowing dates, the dynamic characteristics of tillering of YLY900 and YLY911 were relatively close, while HLY898 had great differences from YLY900 and YLY911. In this paper, the evolution process of the number of tillers of rice was accurately described by the DTM, and the regularity and characteristics of tillering dynamics of rice were deeply revealed using the DTIs, with agronomic experiment of three varieties with six sowing dates. Therefore, it has important theoretical value to deeply understand the law of the tillering dynamic of rice affected by sowing dates and has important practical significance for guiding accurate planting and fine management of rice production from the perspective of grasping tillering dynamics.
RESUMO
Phytochromes are red/far-red light receptors that regulate various aspects of plant growth, development and stress responses. The precise mechanism by which Phytochrome B (PhyB)-mediated light signaling influences plant defense and development remains unclear. In this study, we showed that PhyB enhances rice (Oryza sativa) blast disease resistance, tillering, and grain size compared to wild-type plants. Notably, PhyB interacted with and degraded grassy tiller 1 (GT1), a negative regulator of tiller development. Knockdown of GT1 in a phyB background partially rescued the diminished tillering of phyB. However, GT1 negatively regulates rice resistance to blast, suggesting that PhyB degradation of GT1 promotes tillering but not blast resistance. Previously, PhyB was found to interact with and degrade phytochrome-interacting factor 15 (PIL15), a key regulator of seed development that reduces rice resistance to blast and seed size. pil15 mutation in phyB mutants rescued phyB seed size and blast resistance, suggesting that PhyB might interact with and degrade PIL15 to negatively regulate blast resistance and seed size. PIL15 directly activated sugar will be eventually exported transporter 2a (SWEET2a). sweet2a mutants were less susceptible to blast disease compared to wild type. Collectively, these data demonstrate that PhyB promotes rice yield and blast resistance by inhibiting the transcription factors GT1 and PIL15 and downstream signaling.
RESUMO
Heading date 3a (Hd3a, a FLOWERING LOCUS T (FT) ortholog from rice) is well known for its important role in rice (Oryza sativa L.), controlling floral transition under short-day (SD) conditions. Although the effect of Hd3a on promoting branching has been found, the underlying mechanism remains largely unknown. In this report, we overexpressed an Hd3a and BirAG (encoding a biotin ligase) fusion gene in rice, and found that early flowering and tiller bud outgrowth was promoted in BHd3aOE transgenic plants. On the contrary, knockout of Hd3a delayed flowering and tiller bud outgrowth. By using the BioID method, we identified multiple Hd3a proximal proteins. Among them, D14, D53, TPR1, TPR2, and TPRs are central components of the strigolactone signaling pathway, which has an inhibitory effect on rice tillering. The interaction between Hd3a, on the one hand, and D14 and D53 was further confirmed by the bimolecular fluorescence complementation (BiFC), yeast two-hybrid (Y2H), and co-immunoprecipitation (Co-IP) methods. We also found that Hd3a prevented the degradation of D53 induced by rac-GR24 (a strigolactone analog) in rice protoplasts. RT-qPCR assay showed that the expression levels of genes involved in strigolactone biosynthesis and signal transduction were altered significantly between WT and Hd3a overexpression (Hd3aOE) or mutant (hd3a) plants. OsFC1, a downstream target of the strigolactone signaling transduction pathway in controlling rice tillering, was downregulated significantly in Hd3aOE plants, whereas it was upregulated in hd3a lines. Collectively, these results indicate that Hd3a promotes tiller bud outgrowth in rice by attenuating the negative effect of strigolactone signaling on tillering and highlight a novel molecular network regulating rice tiller outgrowth by Hd3a.
Assuntos
Regulação da Expressão Gênica de Plantas , Lactonas , Oryza , Proteínas de Plantas , Transdução de Sinais , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flores/genética , Compostos Heterocíclicos com 3 AnéisRESUMO
Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.
RESUMO
In order to study the effects of combined application of compound fertilizer and branch fertilizer on the growth and yield of machine-transplanted rice, four hybrid rice varieties were used as experimental materials, and four fertilization treatments were set up by completely random design: compound fertilizer (T0), compound fertilizer + conventional branch fertilizer (T1), compound fertilizer + (branch fertilizer - 20%) (T2), compound fertilizer + (branch fertilizer + 20%) (T3). The results showed that the branch fertilizer could effectively promote the early growth and rapid development of tillers, and increase the agronomic traits such as chlorophyll content, LAI and dry matter accumulation. Among the four varieties, the yield of the V4 variety was the highest under T3 treatment, which was 11,471.15 kg·hm-2, which was 37.34% higher than that of the control, and the yield increase effect was the most significant. The correlations showed that dry matter accumulation and LAI were significantly or highly significantly positively correlated with the number of effective spikes and yield, and the number of effective spikes was highly significantly positively correlated with the yield. In general, the application of pitchfork fertiliser increased the effective number of spikes and the number of grains per spike of each variety to different degrees, which effectively promoted the improvement of the rice yield.
RESUMO
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
RESUMO
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Assuntos
Citocininas , Lactonas , Nitrogênio , Reguladores de Crescimento de Plantas , Transdução de Sinais , Triticum , Citocininas/metabolismo , Nitrogênio/metabolismo , Lactonas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimentoRESUMO
BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.
Assuntos
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores de Crescimento de Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacologia , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Herbicidas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Giberelinas/farmacologia , Giberelinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , ÉsteresRESUMO
Leaf inclination angle (LIA) and tillering impact the winter wheat (Triticum aestivum L.) population canopy structure. Understanding their effects on water use (WU) parameters and yield can guide water-saving strategies through population control. In this study, six near-isogenic lines (NILs) and their parents were selected as materials. These special materials were characterized by varying tillering at the current sowing density, a similar genetic background, and, particularly, a gradient in mean flag leaf LIA. The investigation focused on the jointing to early grain-filling stage, the peak water requirement period of wheat crops. Population-scale transpiration (PT) and evaporation from the soil surface (E) were partitioned from total evapotranspiration (ET) by the means of micro-lysimeters. The results showed decreased PT, E, and ET with increased population density (PD) within a narrow density range derived from varying tillering across genotypes. Significant correlations existed between PD and ET, E, and PT, especially in the wettest 2017-2018 growing season. Within such narrow PD range, all the correlations between WU parameters and PD were negative, although some correlations were not statistically significant, thereby suggesting the population structure's predominant impact. No significant correlation existed between LIA and both ET and PT within the LIA range of 35°-65°. However, significant correlations occurred between LIA and E in two growing seasons. Genotypes with similar LIA but different PD produced varied ET; while with similar PD, the four pairs of genotypes with different LIA each consumed similar ET, thus highlighting PD's more crucial role in regulating ET. The yield increased with higher LIA, and showed a significant correlation, emphasizing the LIA's significant effect on yield. However, no correlation was observed with PD, indicating the minor effect of tillering at the current sowing density. Therefore these results might offer valuable insights for breeding water-saving cultivars and optimizing population structures for effective field water conservation.
Assuntos
Folhas de Planta , Transpiração Vegetal , Solo , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Solo/química , Estações do Ano , Água/metabolismo , GenótipoRESUMO
BACKGROUND: Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS: We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS: As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.
Assuntos
Arabidopsis , Proteínas de Plantas , Plantas Geneticamente Modificadas , Triticum , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismoRESUMO
Branching/tillering is a critical process for plant architecture and grain yield. However, Branching is intricately controlled by both endogenous and environmental factors. The underlying mechanisms of tillering in wheat remain poorly understood. In this study, we identified Less Tiller 1 (LT1) as a novel regulator of wheat tillering using an enhanced bulked segregant analysis (BSA) method, uni-BSA. This method effectively reduces alignment noise caused by the high repetitive sequence content in the wheat genome. Loss-of-function of LT1 results in fewer tillers due to defects in axillary meristem initiation and bud outgrowth. We mapped LT1 to a 6 Mb region on the chromosome 2D short arm and validated a nucleotide-binding (NB) domain encoding gene as LT1 using CRISPR/Cas9. Furthermore, the lower sucrose concentration in the shoot bases of lt1 might result in inadequate bud outgrowth due to disturbances in the sucrose biosynthesis pathways. Co-expression analysis suggests that LT1 controls tillering by regulating TaROX/TaLAX1, the ortholog of the Arabidopsis tiller regulator REGULATOR OF AXILLARY MERISTEM FORMATION (ROX) or the rice axillary meristem regulator LAX PANICLE1 (LAX1). This study not only offers a novel genetic resource for cultivating optimal plant architecture but also underscores the importance of our innovative BSA method. This uni-BSA method enables the swift and precise identification of pivotal genes associated with significant agronomic traits, thereby hastening gene cloning and crop breeding processes in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01484-7.
RESUMO
Transitioning from full to deficit irrigation (DI) has become a key strategy in arid regions to combat water scarcity and enhance irrigation water use efficiency (IWUE). However, implementing DI requires additional approaches to counter its negative effects on wheat production. One effective approach is the foliar application of salicylic acid (SA), micronutrients (Mic; zinc and manganese), and macronutrients (Mac; nitrogen, phosphorus, and potassium). However, there is a lack of knowledge on the optimal combinations and timing of foliar application for these components to maximize their benefits under arid conditions, which is the primary focus of this study. A two-year field study was conducted to assess the impact of the foliar application of SA alone and in combination with Mic (SA + Mic) or Mic and Mac (SA + Mic + Mac) at various critical growth stages on wheat growth, physiology, productivity, and IWUE under DI conditions. Our result demonstrated that the foliar application of different components, the timing of application, and their interaction had significant effects on all investigated wheat parameters with few exceptions. Applying different components through foliar application at multiple growth stages, such as tillering and heading or tillering, heading, and grain filling, led to significant enhancements in various wheat parameters. The improvements ranged from 7.7% to 23.2% for growth parameters, 8.7% to 24.0% for physiological traits, 1.4% to 21.0% for yield and yield components, and 14.8% to 19.0% for IWUE compared to applying the components only at the tillering stage. Plants treated with different components (SA, Mic, Mac) exhibited enhanced growth, production, and IWUE in wheat compared to untreated plants. The most effective treatment was SA + Mic, followed by SA alone and SA + Mic + Mac. The foliar application of SA, SA + Mic, and SA + Mic + Mac improved growth parameters by 1.2-50.8%, 2.7-54.6%, and 2.5-43.9%, respectively. Yield parameters were also enhanced by 1.3-33.0%, 2.4-37.2%, and 3.0-26.6% while IWUE increased by 28.6%, 33.0%, and 18.5% compared to untreated plants. A heatmap analysis revealed that the foliar application of SA + Mic at multiple growth stages resulted in the highest values for all parameters, followed by SA alone and SA + Mic + Mac applications at multiple growth stages. The lowest values were observed in untreated plants and with the foliar application of different components only at the tillering stage. Thus, this study suggested that the foliar application of SA + Mic at various growth stages can help sustain wheat production in arid regions with limited water resources.
RESUMO
To clarify the appropriate rate of phosphorus application and physiological mechanism for promoting wheat tillering and efficient utilization of phosphorus fertilizer with supplementary irrigation, we used 'Jimai 22' wheat variety as the test material, to set up three phosphorus application treatments, including low (90 kg P2O5·hm-2, P1), medium (135 kg P2O5·hm-2, P2), and high (180 kg P2O5·hm-2, P3) application rates, with no phosphorus application as the control (P0). We increased the relative soil water content of each treatment at join-ting stage and anthesis stage to 70%, and measured the area of tiller node, the content of endogenous hormones, the number of tillers in each tiller position, photosynthetic parameters, the distribution of 13C assimilates in each stem and tiller, as well as the grain yield and partial productivity of phosphate fertilizer. The results showed that compared with P0 and P1 treatments, P2 significantly increased the area of tiller node and the trans-zeatin (tZ), the photosynthetic parameters of the uppermost expanded leaves of the main stem, the total tillers per plant, and the distribution of 13C assimilates in each tiller. The number of ears per plant was increased by 0.51 and 0.36, and grain yield was increased by 40.3% and 13.2%, respectively. In P3 treatment, the number of tillers increased, but the panicles per plant, and the grain yield and phosphate fertilizer partial productivity decreased. Our results suggested that the moderate phosphorus treatment (135 kg·hm-2) under supplementary irrigation was suitable for high yield and high efficiency of wheat.
Assuntos
Irrigação Agrícola , Isótopos de Carbono , Fertilizantes , Fósforo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Fósforo/metabolismo , Irrigação Agrícola/métodos , Isótopos de Carbono/análiseRESUMO
Sugarcane smut is the most damaging disease that is present almost across the globe, causing mild to severe yield losses depending upon the cultivar types, pathogen races and climatic conditions. Cultivation of smut-resistant cultivars is the most feasible and economical option to mitigate its damages. Previous investigations revealed that there is a scarcity of information on early detection and effective strategies to suppress etiological agents of smut disease due to the characteristics overlapping within species complexes. In this study, 104 sugarcane cultivars were screened by artificial inoculation with homogenate of all possible pathogen races of Sporisorium scitamineum during two consecutive growing seasons. The logistic smut growth pattern and the disease intrinsic rate were recorded by disease growth curve. Variable levels of disease incidence i.e., ranging from 0 to 54.10% were observed among these sugarcane cultivars. Besides, pathogen DNA in plant shoots of all the cultivars was successfully amplified by PCR method using smut-specific primers except 26 cultivars which showed an immune reaction in the field trial. Furthermore, the plant germination and tillering of susceptible sugarcane cultivars were greatly influenced by pathogen inoculation. In susceptible cultivars, S. scitamineum caused a significant reduction in setts germination, coupled with profuse tillering, resulting in fewer millable canes. Correlation analysis demonstrated that there was a positive relationship between reduction in setts germination and increase in the number of tillers. The present study would be helpful for the evaluation of smut resistance in a wide range of sugarcane germplasm, especially from the aspects of setts germination and tillers formation, and it also screened out several excellent germplasm for potential application in sugarcane breeding.
Assuntos
Germinação , Doenças das Plantas , Saccharum , Saccharum/microbiologia , Saccharum/crescimento & desenvolvimento , Saccharum/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Resistência à Doença/genética , Ustilaginales/patogenicidade , Ustilaginales/fisiologia , Ustilaginales/genéticaRESUMO
BACKGROUND: Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS: In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS: This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.
Assuntos
Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Plantas Geneticamente Modificadas , Aminoácidos Neutros/metabolismo , Regulação da Expressão Gênica de Plantas , Aminoácidos/metabolismoRESUMO
MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.
Assuntos
Regulação da Expressão Gênica de Plantas , Nitrogênio , Oryza , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Mutação , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: MicroRNA396 (miR396) plays an important role in the regulation of plant growth and development by repressing the expression level of its target growth-regulating factor (GRF) family genes. In our previous study, we found that overexpression of miR396 negatively regulated both tillering and biomass yield in switchgrass (Panicum virgatum L.). We, therefore, speculated that blocking the expression of miR396 could enhance switchgrass tillering and biomass yield. Here, we produced transgenic switchgrass plants overexpressing a target mimicry form of miR396 (MIM396) in wild type (WT) and Os-MIR319b overexpressing switchgrass plant (with higher enzymatic hydrolysis efficiency, but reduced tillering), in which the expression of miR396 was blocked. The phenotype and biological yields of these plants were analyzed. RESULTS: Blocking miR396 to improve its target PvGRFs expression in switchgrass improved the tiller number and dry weight of transgenic plants. Further morphological analysis revealed that MIM396 plants increased the number of aerial branches and basal tillers compared to those of wild-type plants. The enzymatic efficiency of MIM396 plants was reduced; however, the total sugar production per plant was still significantly higher than that of wild-type plants due to the increase in biomass. In addition, blocking miR396 in a transgenic switchgrass plant overexpressing Os-MIR319b (TG21-Ms) significantly increased the PvGRF1/3/5 expression level and tiller number and biomass yield. The miR156-target gene PvSPL4, playing a negative role in aerial and basal buds outgrowth, showed significant downregulated in MIM396 and TG21-Ms. Those results indicate that miR396-PvGRFs, through disrupting the PvSPL4 expression, are involved in miR319-PvPCFs in regulating tiller number, at least partly. CONCLUSIONS: MIM396 could be used as a molecular tool to improving tiller number and biomass yield in switchgrass wild type and miR319b transgenic plants. This finding may be applied to other graminaceous plants to regulate plant biological yield.
RESUMO
Tillering directly determines the seed production and propagation capacity of clonal plants. However, the molecular mechanisms involved in the tiller development of clonal plants are still not fully understood. In this study, we conducted a proteome comparison between the tiller buds and stem node of a multiple-tiller mutant mtn1 (more tillering number 1) and a wild type of centipedegrass. The results showed significant increases of 29.03% and 27.89% in the first and secondary tiller numbers, respectively, in the mtn1 mutant compared to the wild type. The photosynthetic rate increased by 31.44%, while the starch, soluble sugar, and sucrose contents in the tiller buds and stem node showed increases of 13.79%, 39.10%, 97.64%, 37.97%, 55.64%, and 7.68%, respectively, compared to the wild type. Two groups comprising 438 and 589 protein species, respectively, were differentially accumulated in the tiller buds and stem node in the mtn1 mutant. Consistent with the physiological characteristics, sucrose and starch metabolism as well as plant hormone signaling were found to be enriched with differentially abundant proteins (DAPs) in the mtn1 mutant. These results revealed that sugars and plant hormones may play important regulatory roles in the tiller development in centipedegrass. These results expanded our understanding of tiller development in clonal plants.
RESUMO
Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.
Assuntos
Arabidopsis , Ésteres , Compostos Heterocíclicos com 3 Anéis , Lactonas , Naftalenos , Simulação de Acoplamento Molecular , Ácidos CarboxílicosRESUMO
Tillering/branching pattern plays a significant role in determining the structure and diversity of grass, and trimming has been found to induce tillering in turfgrass. Recently, it has been reported that hydrogen peroxide (H2O2) regulates axillary bud development. However, the role of H2O2 in trimming-induced tillering in bermudagrass, a kind of turfgrass, remains unclear. Our study unveils the significant impact of trimming on promoting the sprouting and growth of tiller buds in stolon nodes, along with an increase in the number of tillers in the main stem. This effect is accompanied by spatial-temporal changes in cytokinin and sucrose content, as well as relevant gene expression in axillary buds. In addition, the partial trimming of new-born tillers results in an increase in sucrose and starch reserves in their leaves, which can be attributed to the enhanced photosynthesis capacity. Importantly, trimming promotes a rapid H2O2 burst in the leaves of new-born tillers and axillary stolon buds. Furthermore, exogenous application of H2O2 significantly increases the number of tillers after trimming by affecting the expression of cytokinin-related genes, bolstering photosynthesis potential, energy reserves and antioxidant enzyme activity. Taken together, these results indicate that both endogenous production and exogenous addition of H2O2 enhance the inductive effects of trimming on the tillering process in bermudagrass, thus helping boost energy supply and maintain the redox state in newly formed tillers.