Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(36): e2400677121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39190357

RESUMO

Animals use a small number of morphogens to pattern tissues, but it is unclear how evolution modulates morphogen signaling range to match tissues of varying sizes. Here, we used single-molecule imaging in reconstituted morphogen gradients and in tissue explants to determine that Hedgehog diffused extracellularly as a monomer, and rapidly transitioned between membrane-confined and -unconfined states. Unexpectedly, the vertebrate-specific protein SCUBE1 expanded Hedgehog gradients by accelerating the transition rates between states without affecting the relative abundance of molecules in each state. This observation could not be explained under existing models of morphogen diffusion. Instead, we developed a topology-limited diffusion model in which cell-cell gaps create diffusion barriers, which morphogens can only overcome by passing through a membrane-unconfined state. Under this model, SCUBE1 promoted Hedgehog secretion and diffusion by allowing it to transiently overcome diffusion barriers. This multiscale understanding of morphogen gradient formation unified prior models and identified knobs that nature can use to tune morphogen gradient sizes across tissues and organisms.


Assuntos
Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Animais , Difusão , Morfogênese , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Imagem Individual de Molécula/métodos
2.
Patterns (N Y) ; 5(3): 100915, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38487801

RESUMO

Understanding tissue architecture and niche-specific microenvironments in spatially resolved transcriptomics (SRT) requires in situ annotation and labeling of cells. Effective spatial visualization of these data demands appropriate colorization of numerous cell types. However, current colorization frameworks often inadequately account for the spatial relationships between cell types. This results in perceptual ambiguity in neighboring cells of biological distinct types, particularly in complex environments such as brain or tumor. To address this, we introduce Spaco, a potent tool for spatially aware colorization. Spaco utilizes the Degree of Interlacement metric to construct a weighted graph that evaluates the spatial relationships among different cell types, refining color assignments. Furthermore, Spaco incorporates an adaptive palette selection approach to amplify chromatic distinctions. When benchmarked on four diverse datasets, Spaco outperforms existing solutions, capturing complex spatial relationships and boosting visual clarity. Spaco ensures broad accessibility by accommodating color vision deficiency and offering open-accessible code in both Python and R.

3.
Cell Stem Cell ; 30(11): 1486-1502.e9, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922879

RESUMO

Organ regeneration requires dynamic cell interactions to reestablish cell numbers and tissue architecture. While we know the identity of progenitor cells that replace lost tissue, the transient states they give rise to and their role in repair remain elusive. Here, using multiple injury models, we find that alveolar fibroblasts acquire distinct states marked by Sfrp1 and Runx1 that influence tissue remodeling and reorganization. Unexpectedly, ablation of alveolar epithelial type-1 (AT1) cells alone is sufficient to induce tissue remodeling and transitional states. Integrated scRNA-seq followed by genetic interrogation reveals RUNX1 is a key driver of fibroblast states. Importantly, the ectopic induction or accumulation of epithelial transitional states induce rapid formation of transient alveolar fibroblasts, leading to organ-wide fibrosis. Conversely, the elimination of epithelial or fibroblast transitional states or RUNX1 loss, leads to tissue simplification resembling emphysema. This work uncovered a key role for transitional states in orchestrating tissue topologies during regeneration.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Pulmão , Células Epiteliais , Células-Tronco , Comunicação Celular
4.
BMC Bioinformatics ; 23(1): 506, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434526

RESUMO

BACKGROUND: Histological feature representation is advantageous for computer aided diagnosis (CAD) and disease classification when using predictive techniques based on machine learning. Explicit feature representations in computer tissue models can assist explainability of machine learning predictions. Different approaches to feature representation within digital tissue images have been proposed. Cell-graphs have been demonstrated to provide precise and general constructs that can model both low- and high-level features. The basement membrane is high-level tissue architecture, and interactions across the basement membrane are involved in multiple disease processes. Thus, the basement membrane is an important histological feature to study from a cell-graph and machine learning perspective. RESULTS: We present a two stage machine learning pipeline for generating a cell-graph from a digital H &E stained tissue image. Using a combination of convolutional neural networks for visual analysis and graph neural networks exploiting node and edge labels for topological analysis, the pipeline is shown to predict both low- and high-level histological features in oral mucosal tissue with good accuracy. CONCLUSIONS: Convolutional and graph neural networks are complementary technologies for learning, representing and predicting local and global histological features employing node and edge labels. Their combination is potentially widely applicable in histopathology image analysis and can enhance explainability in CAD tools for disease prediction.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Diagnóstico por Computador , Mucosa
5.
Dev Growth Differ ; 64(9): 566-576, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217609

RESUMO

Tissue stem cells are vital for organ homeostasis and regeneration owing to their ability to self-renew and differentiate into the various cell types that constitute organ tissue. These stem cells are formed during complex and dynamic organ development, necessitating spatial-temporal coordination of morphogenetic events and cell fate specification during this process. In recent years, technological advances have enabled the tracing of the cellular dynamics, states, and lineages of individual cells over time in relation to tissue morphological changes. These dynamic data have not only revealed the origin of tissue stem cells in various organs but have also led to an understanding of the molecular, cellular, and biophysical bases of tissue stem cell formation. Herein, we summarize recent findings on the developmental origin of tissue stem cells in the hair follicles, intestines, brain, skeletal muscles, and hematopoietic system, and further discuss how stem cell fate specification is coordinated with tissue topology.


Assuntos
Células-Tronco , Linhagem da Célula , Diferenciação Celular , Células-Tronco/metabolismo , Morfogênese
6.
Curr Biol ; 30(8): 1504-1516.e8, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32169211

RESUMO

Cell-to-cell heterogeneity prevails in many systems, as exemplified by cell growth, although the origin and function of such heterogeneity are often unclear. In plants, growth is physically controlled by cell wall mechanics and cell hydrostatic pressure, alias turgor pressure. Whereas cell wall heterogeneity has received extensive attention, the spatial variation of turgor pressure is often overlooked. Here, combining atomic force microscopy and a physical model of pressurized cells, we show that turgor pressure is heterogeneous in the Arabidopsis shoot apical meristem, a population of stem cells that generates all plant aerial organs. In contrast with cell wall mechanical properties that appear to vary stochastically between neighboring cells, turgor pressure anticorrelates with cell size and cell neighbor number (local topology), in agreement with the prediction by our model of tissue expansion, which couples cell wall mechanics and tissue hydraulics. Additionally, our model predicts two types of correlations between pressure and cellular growth rate, where high pressure may lead to faster- or slower-than-average growth, depending on cell wall extensibility, yield threshold, osmotic pressure, and hydraulic conductivity. The meristem exhibits one of these two regimes, depending on conditions, suggesting that, in this tissue, water conductivity may contribute to growth control. Our results unravel cell pressure as a source of patterned heterogeneity and illustrate links between local topology, cell mechanical state, and cell growth, with potential roles in tissue homeostasis.


Assuntos
Arabidopsis/fisiologia , Parede Celular/fisiologia , Meristema/fisiologia , Pressão Osmótica , Arabidopsis/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , Microscopia de Força Atômica
7.
Mol Plant ; 12(6): 731-742, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30794885

RESUMO

Organ function is at least partially shaped and constrained by the organization of their constituent cells. Extensive investigation has revealed mechanisms explaining how these patterns are generated, with less being known about their functional relevance. In this paper, a methodology to discretize and quantitatively analyze cellular patterning is described. By performing global organ-scale cellular interaction mapping, the organization of cells can be extracted and analyzed using network science. This provides a means to take the developmental analysis of cellular organization in complex organisms beyond qualitative descriptions and provides data-driven approaches to inferring cellular function. The bridging of a structure-function relationship in hypocotyl epidermal cell patterning through global topological analysis provides support for this approach. The analysis of cellular topologies from patterning mutants further enables the contribution of gene activity toward the organizational properties of tissues to be linked, bridging molecular and tissue scales. This systems-based approach to investigate multicellular complexity paves the way to uncovering the principles of complex organ design and achieving predictive genotype-phenotype mapping.


Assuntos
Biologia de Sistemas/métodos , Hipocótilo/metabolismo , Relação Estrutura-Atividade
8.
Cell Syst ; 8(1): 53-65.e3, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30660611

RESUMO

The control of cell position and division act in concert to dictate multicellular organization in tissues and organs. How these processes shape global order and molecular movement across organs is an outstanding problem in biology. Using live 3D imaging and computational analyses, we extracted networks capturing cellular connectivity dynamics across the Arabidopsis shoot apical meristem (SAM) and topologically analyzed the local and global properties of cellular architecture. Locally generated cell division rules lead to the emergence of global tissue-scale organization of the SAM, facilitating robust global communication. Cells that lie upon more shorter paths have an increased propensity to divide, with division plane placement acting to limit the number of shortest paths their daughter cells lie upon. Cell shape heterogeneity and global cellular organization requires KATANIN, providing a multiscale link between cell geometry, mechanical cell-cell interactions, and global tissue order.


Assuntos
Arabidopsis/química , Meristema/química , Brotos de Planta/química , Divisão Celular
9.
Development ; 144(23): 4386-4397, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084800

RESUMO

D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Fenômenos Biomecânicos , Divisão Celular , Genes de Plantas , Mitose , Modelos Biológicos , Mutação , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA