Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Oral Implants Res ; 35(8): 906-921, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38591734

RESUMO

OBJECTIVES: The aim of this narrative review was to explore the application of digital technologies (DT) for the simplification and improvement of bone augmentation procedures in advanced implant dentistry. MATERIAL AND METHODS: A search on electronic databases was performed to identify systematic reviews, meta-analyses, randomized and non-randomized controlled trials, prospective/retrospective case series, and case reports related to the application of DT in advanced implant dentistry. RESULTS: Seventy-nine articles were included. Potential fields of application of DT are the following: 1) the use of intra-oral scanners for the definition of soft tissue profile and the residual dentition; 2) the use of dental lab CAD (computer-aided design) software to create a digital wax-up replicating the ideal ridge and tooth morphology; 3) the matching of STL (Standard Triangulation Language) files with DICOM (DIgital COmmunication in Medicine) files from CBCTs with a dedicated software; 4) the production of stereolithographic 3D models reproducing the jaws and the bone defects; 5) the creation of surgical templates to guide implant placement and augmentation procedures; 6) the production of customized meshes for bone regeneration; and 7) the use of static or dynamic computer-aided implant placement. CONCLUSIONS: Results from this narrative review seem to demonstrate that the use of a partially or fully digital workflow can be successfully used also in advanced implant dentistry. However, the number of studies (in particular RCTs) focused on the use of a fully digital workflow in advanced implant dentistry is still limited and more studies are needed to properly evaluate the potentials of DT.


Assuntos
Desenho Assistido por Computador , Humanos , Regeneração Óssea , Aumento do Rebordo Alveolar/métodos , Implantação Dentária Endóssea/métodos
2.
Front Bioeng Biotechnol ; 11: 1284359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026903

RESUMO

Titanium meshes are widely utilized in alveolar bone augmentation, and this study aims to enhance the properties of titanium meshes through heat treatment (HT) and the synergistic finishing technology of electric field and flow field (EFSF). Our findings illustrate that the titanium mesh exhibits improved mechanical properties following HT treatment. The innovative EFSF technique, in combination with HT, has a substantial impact on improving the surface properties of titanium meshes. HT initiates grain fusion and reduces surface pores, resulting in enhanced tensile and elongation properties. EFSF further enhances these improvements by significantly reducing surface roughness and eliminating adhered titanium powder, a byproduct of selective laser melting printing. Increased hydrophilicity and surface-free energy are achieved after EFSF treatment. Notably, the EFSF-treated titanium mesh exhibits reduced bacterial adhesion and is non-toxic to osteoblast proliferation. These advancements increase its suitability for clinical alveolar bone augmentation.

3.
Regen Biomater ; 10: rbad057, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359729

RESUMO

Large-size mandible graft has huge needs in clinic caused by infection, tumor, congenital deformity, bone trauma and so on. However, the reconstruction of large-size mandible defect is challenged due to its complex anatomical structure and large-range bone injury. The design and fabrication of porous implants with large segments and specific shapes matching the native mandible remain a considerable challenge. Herein, the 6% Mg-doped calcium silicate (CSi-Mg6) and ß- and α-tricalcium phosphate (ß-TCP, α-TCP) bioceramics were fabricated by digital light processing as the porous scaffolds of over 50% in porosity, while the titanium mesh was fabricated by selective laser melting. The mechanical tests showed that the initial flexible/compressive resistance of CSi-Mg6 scaffolds was markedly higher than that of ß-TCP and α-TCP scaffolds. Cell experiments showed that these materials all had good biocompatibility, while CSi-Mg6 significantly promoted cell proliferation. In the rabbit critically sized mandible bone defects (∼13 mm in length) filled with porous bioceramic scaffolds, the titanium meshes and titanium nails were acted as fixation and load bearing. The results showed that the defects were kept during the observation period in the blank (control) group; in contrast, the osteogenic capability was significantly enhanced in the CSi-Mg6 and α-TCP groups in comparison with the ß-TCP group, and these two groups not only had significantly increased new bone formation but also had thicker trabecular and smaller trabecular spacing. Besides, the CSi-Mg6 and α-TCP groups showed appreciable material biodegradation in the later stage (from 8 to 12 weeks) in comparison with the ß-TCP scaffolds while the CSi-Mg6 group showed much outstanding mechanical capacity in vivo in the early stage compared to the ß-TCP and α-TCP groups. Totally, these findings suggest that the combination of customized strength-strong bioactive CSi-Mg6 scaffolds together with titanium meshes is a promising way for repairing the large-size load-bearing mandible defects.

4.
Front Bioeng Biotechnol ; 11: 1100155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741746

RESUMO

Additive manufacturing (AM) technologies can enable the direct fabrication of customized physical objects with complex shapes, based on computer-aided design models. This technology is changing the digital manufacturing industry and has become a subject of considerable interest in digital implant dentistry. Personalized dentistry implant treatments for individual patients can be achieved through Additive manufacturing. Herein, we review the applications of Additive manufacturing technologies in oral implantology, including implant surgery, and implant and restoration products, such as surgical guides for implantation, custom titanium meshes for bone augmentation, personalized or non-personalized dental implants, custom trays, implant casts, and implant-support frameworks, among others. In addition, this review also focuses on Additive manufacturing technologies commonly used in oral implantology. Stereolithography, digital light processing, and fused deposition modeling are often used to construct surgical guides and implant casts, whereas direct metal laser sintering, selective laser melting, and electron beam melting can be applied to fabricate dental implants, personalized titanium meshes, and denture frameworks. Moreover, it is sometimes required to combine Additive manufacturing technology with milling and other cutting and finishing techniques to ensure that the product is suitable for its final application.

5.
Clin Oral Implants Res ; 33(6): 607-621, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35305283

RESUMO

OBJECTIVES: To evaluate the outcomes of bone regeneration using a customized titanium mesh scaffold to cover a bone graft for reconstruction of complex defects of the jaws. MATERIALS AND METHODS: 19 large defects were digitally reconstructed using CT scans according to the prosthetic requirements. A titanium mesh scaffold was designed to cover the bone (autologous/bovine bone particulate) graft. At least 6 months after surgery, a new cone-beam CT was taken. The pre- and postoperative CT datasets were then converted into three-dimensional models and digitally aligned. The actual mesh position was compared to the virtual position to assess the reliability of the digital project. The reconstructed bone volumes (RBVs) were calculated according to the planned bone volumes (PBVs), outlining the areas under the mesh. These values were then correlated with the number of exposures, locations of atrophy, and virtually planned bone volume. RESULTS: The mean matching value between the planned position of the mesh and the actual one was 82 ± 13.4%. 52.3% (40% early and 60% late) exposures were observed, with 15.8% exhibiting infection. 26.3% resulted as failures. The amount of reconstructed bone volume (RBV) in respect to PBV was 65 ± 40.5%, including failures, and 88.2 ± 8.32% without considering the failures. The results of the exposure event were statistically significant (p = .006) in conditioning the bone volume regenerated. CONCLUSIONS: This study obtained up to 88% of bone regeneration in 74% of the cases. The failures encountered (26%) should underline the operator's expertise relevance in conditioning the final result.


Assuntos
Aumento do Rebordo Alveolar , Implantes Dentários , Aumento do Rebordo Alveolar/métodos , Animais , Regeneração Óssea , Transplante Ósseo/métodos , Bovinos , Implantação Dentária Endóssea/métodos , Projetos Piloto , Reprodutibilidade dos Testes , Telas Cirúrgicas , Titânio
6.
BMC Oral Health ; 20(1): 219, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758217

RESUMO

BACKGROUND: One of the most recent innovations in bone augmentation surgery is represented by computer-aided-design/computer-aided-manufacturing (CAD/CAM) customized titanium meshes, which can be used to restore vertical bone defects before implant-prosthetic rehabilitations. The aim of this study was to evaluate the effectiveness/reliability of this technique in a consecutive series of cases. METHODS: Ten patients in need of bone augmentation before implant therapy were treated using CAD/CAM customized titanium meshes. A digital workflow was adopted to design virtual meshes on 3D bone models. Then, Direct Metal Laser Sintering (DMLS) technology was used to produce the titanium meshes, and vertical ridge augmentation was performed according to an established surgical protocol. Surgical complications, healing complications, vertical bone gain (VBG), planned bone volume (PBV), lacking bone volume (LBV), regenerated bone volume (RBV), average regeneration rate (RR) and implant success rate were evaluated. RESULTS: All augmented sites were successfully restored with definitive implant-supported fixed partial dentures. Measurements showed an average VBG of 4.5 ± 1.8 mm at surgical re-entry. Surgical and healing complications occurred in 30% and 10% of cases, respectively. Mean values of PBV, LBV, and RBV were 984, 92, and 892 mm3, respectively. The average RR achieved was 89%. All 26 implants were successfully in function after 1 year of follow-up. CONCLUSIONS: The results of this study suggest that the bone augmentation by means of DMLS custom-made titanium meshes can be considered a reliable and effective technique in restoring vertical bone defects.


Assuntos
Aumento do Rebordo Alveolar , Implantes Dentários , Desenho Assistido por Computador , Computadores , Humanos , Projetos Piloto , Reprodutibilidade dos Testes , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA