Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39408723

RESUMO

There is an increasing prevalence of diabetes mellitus (DM), particularly type 2 DM (T2DM), and its associated complications. T2DM is linked to insulin resistance, chronic inflammation, and oxidative stress, which can lead to both macrovascular and microvascular complications, including peripheral diabetic neuropathy (PDN). Inflammatory processes play a key role in the development and progression of T2DM and its complications, with specific markers like C-reactive protein (CRP), interleukins (ILs), and tumor necrosis factor (TNF)-α being associated with increased risk. Other key inflammatory markers such as nuclear factor kappa B (NF-κB) are activated under hyperglycemic and oxidative stress conditions and contribute to the aggravation of PDN by regulating inflammatory gene expression and enhancing endothelial dysfunction. Other important roles in the inflammatory processes are played by Toll-like receptors (TLRs), caveolin 1 (CAV1), and monocyte chemoattractant protein 1 (MCP1). There is a relationship between vitamin D deficiency and PDN, highlighting the critical role of vitamin D in regulating inflammation and immune responses. The involvement of macrophages in PDN is also suspected, emphasizing their role in chronic inflammation and nerve damage in diabetic patients. Vitamin D supplementation has been found to reduce neuropathy severity, decrease inflammatory markers, and improve glycemic control. These findings suggest that addressing vitamin D deficiency could offer therapeutic benefits for PDN. These molecular pathways are critical in understanding the pathogenesis of DM complications and may offer potential biomarkers or therapeutic targets including anti-inflammatory treatments, vitamin D supplementation, macrophage phenotype modulation, and lifestyle modifications, aimed at reducing inflammation and preventing PDN. Ongoing and more extensive clinical trials with the aim of investigating anti-inflammatory agents, TNF-α inhibitors, and antioxidants are needed to advance deeper into the understanding and treatment of painful diabetic neuropathy.


Assuntos
Biomarcadores , Neuropatias Diabéticas , Inflamação , Humanos , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Inflamação/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Estresse Oxidativo , Animais
2.
Int Immunopharmacol ; 142(Pt A): 113069, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241520

RESUMO

Schisandra chinensis, a traditional Chinese medicine, has been widely applied in China to treat diabetes and its complications. The aim of this study was to discover the active compounds and explain related molecular mechanism contributing to the anti-diabetic effect of Schisandra chinensis. Herein, the therapeutic effects of Schisandra chinensis extracts on type 2 diabetes mellitus (T2DM) were firstly confirmed in vivo. Subsequently, various lignans were isolated from Schisandra chinensis and tested for hypoglycemic activity in palmitic acid-induced insulin-resistant HepG2 (IR-HepG2) cells. Among these lignans, R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8-dimethyl-7-dibenzo [a, c] cyclooctenol (compound 2) and Gomisin A (compound 4) were identified significantly increased the glucose consumption in IR-HepG2 cells. Meanwhile, compounds 2 and 4 activated the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/Ak strain transforming (AKT) pathway, which regulates glucose transporter 2 (GLUT2) and glucose-6-phosphatase (G6Pase), essential for gluconeogenesis and glucose uptake. These compounds also inhibited the nuclear factor-κB (NF-κB) signaling pathway, reducing interleukin-6 (IL-6) levels. Importantly, the hypoglycemic effects of compounds 2 and 4 were diminished after Toll-like receptor 4 (TLR4) knockdown. Cellular thermal shift assays confirmed increased TLR4 protein stability upon treatment with these compounds, indicating direct binding to TLR4. Furthermore, TLR4 knockdown reversed the effects of compounds 2 and 4 on the NF-κB and IRS-1/PI3K/AKT pathways. Taken together, compounds 2 and 4 alleviate IR by targeting TLR4, thereby modulating the NF-κB and IRS-1/PI3K/AKT pathways. These findings suggest that compounds 2 and 4 could be developed as therapeutic agents for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Proteínas Substratos do Receptor de Insulina , Resistência à Insulina , Lignanas , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Schisandra , Transdução de Sinais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Schisandra/química , Lignanas/farmacologia , Lignanas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Células Hep G2 , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Agric Food Chem ; 72(38): 21030-21040, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39283309

RESUMO

Mammalian milk exosomal miRNAs play an important role in maintaining intestinal immune homeostasis and protecting epithelial barrier function, but the specific miRNAs and whether miRNA-mediated mechanisms are responsible for these benefits remain a matter of investigation. This study isolated sheep milk-derived exosomes (sheep MDEs), identifying the enriched miRNAs in sheep MDEs, oar-miR-148a, and oar-let-7b as key components targeting TLR4 and TRAF1, which was validated by a dual-luciferase reporter assay. In dextran sulfate sodium-induced colitis mice, administration of sheep MDEs alleviated colitis symptoms, reduced colonic inflammation, and systemic oxidative stress, as well as significantly increased colonic oar-miR-148a and oar-let-7b while reducing toll-like receptor 4 (TLR4) and TNF-receptor-associated factor 1 (TRAF1) level. Further characterization in TNF-α-challenged Caco-2 cells showed that overexpression of these miRNAs suppressed the TLR4/TRAF1-IκBα-p65 pathway and reduced IL-6 and IL-12 production. These findings indicate that sheep MDEs exert gastrointestinal anti-inflammatory effects through the miRNA-mediated modulation of TLR4 and TRAF1, highlighting their potential in managing colitis.


Assuntos
Colite , Sulfato de Dextrana , Exossomos , MicroRNAs , Leite , Fator 1 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/imunologia , Sulfato de Dextrana/efeitos adversos , Leite/química , Leite/metabolismo , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Colite/metabolismo , Camundongos , Ovinos , Humanos , Exossomos/genética , Exossomos/metabolismo , Exossomos/química , Exossomos/imunologia , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Células CACO-2 , Masculino , Camundongos Endogâmicos C57BL , Feminino
4.
Adv Exp Med Biol ; 1460: 273-295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287855

RESUMO

Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1ß) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.


Assuntos
Adipócitos , Macrófagos , Obesidade , Obesidade/metabolismo , Obesidade/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Adipócitos/metabolismo , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Comunicação Celular
5.
Adv Exp Med Biol ; 1460: 297-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287856

RESUMO

Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKß)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.


Assuntos
Tecido Adiposo , Inflamação , Obesidade , Transdução de Sinais , Humanos , Obesidade/metabolismo , Obesidade/imunologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mediadores da Inflamação/metabolismo
6.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287866

RESUMO

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Assuntos
Adipogenia , Epigênese Genética , MicroRNAs , Obesidade , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Adipogenia/genética , Animais , Adipócitos/metabolismo , Exossomos/metabolismo , Exossomos/genética , Regulação da Expressão Gênica
7.
Curr Alzheimer Res ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39136502

RESUMO

BACKGROUND: Alzheimer's disease (AD) affects approximately 50 million people globally and is expected to triple by 2050. Arctiin is a lignan found in the Arctium lappa L. plant. Arctiin possesses anti-proliferative, antioxidative and anti-adipogenic. OBJECTIVES: We aimed to explore the potential therapeutic effects of Arctiin on rats with AD by evaluating the expression of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. METHODS: AD was induced in rats by administering 70 mg/kg of aluminum chloride through intraperitoneal injection daily for six weeks. After inducing AD, some rats were treated with 25 mg/kg of Arctiin daily for three weeks through oral gavage. Furthermore, to examine the brain tissue structure, hippocampal sections were stained with hematoxylin/eosin and anti-TLR4 antibodies. The collected samples were analyzed for gene expression and protein levels of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. RESULTS: In behavioral tests, rats showed a significant improvement in their behavior when treated with Arctiin. Microimages stained with hematoxylin/eosin showed that Arctiin helped to improve the structure and cohesion of the hippocampus, which was previously impaired by AD. Furthermore, Arctiin reduced the expression of TLR4, NLRP3, STAT3, TGF-ß, cyclin D1, and CDK2. CONCLUSION: Arctiin can enhance rats' behavior and structure of the hippocampus in AD rats. This is achieved through its ability to reduce the expression of both TLR4 and NLRP3, hence inhibiting the inflammasome pathway. Furthermore, Arctiin can improve tissue fibrosis by regulating STAT3 and TGF-ß. Lastly, it can block the cell cycle proteins cyclin D1 and CDK2.

8.
J Biol Chem ; 300(6): 107384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762177

RESUMO

Antimicrobial resistance poses a serious threat to human health worldwide and its incidence continues to increase owing to the overuse of antibiotics and other factors. Macrolide antibiotics such as erythromycin (EM) have immunomodulatory effects in addition to their antibacterial activity. Long-term, low-dose administration of macrolides has shown clinical benefits in treating non-infectious inflammatory respiratory diseases. However, this practice may also increase the emergence of drug-resistant bacteria. In this study, we synthesized a series of EM derivatives, and screened them for two criteria: (i) lack of antibacterial activity and (ii) ability to suppress tumor necrosis factor-α (TNF-α) production in THP-1 cells stimulated with lipopolysaccharide. Among the 37 synthesized derivatives, we identified a novel 12-membered ring macrolide EM982 that lacked antibacterial activity against Staphylococcus aureus and suppressed the production of TNF-α and other cytokines. The effects of EM982 on Toll-like receptor 4 (TLR4) signaling were analyzed using a reporter assay and Western blotting. The reporter assay showed that EM982 suppressed the activation of transcription factors, NF-κB and/or activator protein 1 (AP-1), in HEK293 cells expressing human TLR4. Western blotting showed that EM982 inhibited the phosphorylation of both IκB kinase (IKK) ß and IκBα, which function upstream of NF-κB, whereas it did not affect the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase, which act upstream of AP-1. These results suggest that EM982 suppresses cytokine production by inhibiting phosphorylation of IKKß and IκBα, resulting in the inactivation of NF-κB.


Assuntos
Citocinas , Quinase I-kappa B , Inibidor de NF-kappaB alfa , Humanos , Quinase I-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Citocinas/metabolismo , Eritromicina/farmacologia , Eritromicina/química , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Macrolídeos/farmacologia , Macrolídeos/química , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
9.
Neurosci Lett ; 832: 137806, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38714229

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is a common and difficult-to-treat neuropathic pain disorder in clinical practice. Previous studies have shown that Toll-like receptor 4 (TLR4) modulates the activation of the NF-κB pathway to affect neuropathic pain in rats. Voltage-gated sodium channels (VGSCs) are known to play an important role in neuropathic pain electrical activity. OBJECTIVE: To investigate whether TLR4 can regulate Nav1.3 through the TRAF6/NF-κB p65 pathway after infraorbital nerve chronic constriction injury (ION-CCI). STUDY DESIGN: ION-CCI modeling was performed on SD (Sprague Dawley) rats. To verify the success of the modeling, we need to detect the mechanical pain threshold and ATF3. Then, detecting the expression of TLR4, TRAF6, NF-κB p65, p-p65, and Nav1.3 in rat TG. Subsequently, investigate the role of TLR4/TRAF6/NF-κB pathway in ION-CCI model by intrathecal injections of LPS-rs (TLR4 antagonist), C25-140 (TRAF6 inhibitor), and PDTC (NF-κB p65 inhibitor). RESULTS: ION-CCI surgery decreased the mechanical pain threshold of rats and increased the expression of ATF3, TLR4, TRAF6, NF-κB p-p65 and Nav1.3, but there was no difference in NF-κB p65 expression. After inject antagonist or inhibitor of the TLR4/TRAF6/NF-κB pathway, the expression of Nav1.3 was decreased and mechanical pain threshold was increased. CONCLUSION: In the rat model of ION-CCI, TLR4 in the rat trigeminal ganglion regulates Nav1.3 through the TRAF6/NF-κB p65 pathway, and TLR4 antagonist alleviates neuropathic pain in ION-CCI rats.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3 , Ratos Sprague-Dawley , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Masculino , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Transdução de Sinais/fisiologia , NF-kappa B/metabolismo , Neuralgia do Trigêmeo/metabolismo , Ratos , Modelos Animais de Doenças , Fator de Transcrição RelA/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Limiar da Dor/fisiologia
10.
Front Pediatr ; 12: 1401090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745834

RESUMO

Introduction: Necrotizing enterocolitis (NEC) is a life-threatening inflammatory disease. Its onset might be triggered by Toll-Like Receptor 4 (TLR4) activation via bacterial lipopolysaccharide (LPS). We hypothesize that a deficiency of intestinal alkaline phosphatase (IAP), an enzyme secreted by enterocytes that dephosphorylates LPS, may contribute to NEC development. Methods: In this prospective pilot study, we analyzed intestinal resection specimens from surgical NEC patients, and from patients undergoing Roux-Y reconstruction for hepatobiliary disease as controls. We assessed IAP activity via enzymatic stainings and assays and explored IAP and TLR4 co-localization through immunofluorescence. Results: The study population consisted of five NEC patients (two Bell's stage IIb and three-stage IIIb, median (IQR) gestational age 25 (24-28) weeks, postmenstrual age at diagnosis 28 (26-31) weeks) and 11 controls (unknown age). There was significantly lower IAP staining in NEC resection specimens [49 (41-50) U/g of protein] compared to controls [115 (76-144), P = 0.03]. LPS-dephosphorylating activity was also lower in NEC patients [0.06 (0-0.1)] than in controls [0.3 (0.2-0.5), P = 0.003]. Furthermore, we observed colocalization of IAP and TLR4 in NEC resection specimens. Conclusion: This study suggests a significantly lower IAP level in resection specimens of NEC patients compared to controls. This lower IAP activity suggests a potential role of IAP as a protective agent in the gut, which needs further confirmation in larger cohorts.

11.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38621733

RESUMO

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Assuntos
Resistência à Insulina , Moxibustão , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos Wistar , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/metabolismo , Função da Barreira Intestinal , Ocludina/metabolismo , Claudina-1/metabolismo , Transdução de Sinais , Obesidade/genética , Obesidade/terapia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38654826

RESUMO

During an infection, innate immune cells must adjust nature and strength of their responses to changing pathogen abundances. To determine how stimulation of the pathogen sensing TLR4 shapes subsequent macrophage responses, we systematically varied priming and restimulation concentrations of its ligand KLA. We find that different priming strengths have very distinct effects at multiple stages of the signaling response, including receptor internalization, MAPK activation, cytokine and chemokine production, and nuclear translocation and chromatin association of NFκB and IκB members. In particular, restimulation-induced TNF-α production required KLA doses equal to or greater than those used for prior exposure, indicating that macrophages can detect and adaptively respond to changing TLR4 stimuli. Interestingly, while such adaptation was dependent on the anti-inflammatory cytokine IL-10, exogenous concentrations of IL-10 corresponding to those secreted after strong priming did not exert suppressive effects on TNF-α without such prior priming, confirming the critical role of TLR4 stimulation history.

13.
Exp Anim ; 73(3): 336-346, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38508727

RESUMO

Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel, is a receptor for vanilloids on sensory neurons and is also activated by capsaicin, heat, protons, arachidonic acid metabolites, and inflammatory mediators on neuronal or non-neuronal cells. However, the role of the TRPV1 receptor in pro-inflammatory cytokine secretion and its potential regulatory mechanisms in lipopolysaccharide (LPS)-induced inflammation has yet to be entirely understood. To investigate the role and regulatory mechanism of the TRPV1 receptor in regulating LPS-induced inflammatory responses, bone marrow-derived macrophages (BMDMs) harvested from wild-type (WT) and TRPV1 deficient (Trpv1-/-) mice were used as the cell model. In WT BMDMs, LPS induced an increase in the levels of tumor necrosis factor-α, IL-1ß, inducible nitric oxide synthase, and nitric oxide, which were attenuated in Trpv1-/- BMDMs. Additionally, the phosphorylation of inhibitor of nuclear factor kappa-Bα and mitogen-activated protein kinases, as well as the translocation of nuclear factor kappa-B and activator protein 1, were all decreased in LPS-treated Trpv1-/- BMDMs. Immunoprecipitation assay revealed that LPS treatment increased the formation of TRPV1-Toll-like receptor 4 (TLR4)-cluster of differentiation 14 (CD14) complex in WT BMDMs. Genetic deletion of TRPV1 in BMDMs impaired the LPS-triggered immune-complex formation of TLR4, myeloid differentiation protein 88, and interleukin-1 receptor-associated kinase, all of which are essential regulators in LPS-induced activation of the TLR4 signaling pathway. Moreover, genetic deletion of TRPV1 prevented the LPS-induced lethality and pro-inflammatory production in mice. In conclusion, the TRPV1 receptor may positively regulate the LPS-mediated inflammatory responses in macrophages by increasing the interaction with the TLR4-CD14 complex and activating the downstream signaling cascade.


Assuntos
Inflamação , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Macrófagos , Transdução de Sinais , Canais de Cátion TRPV , Receptor 4 Toll-Like , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Macrófagos/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Inflamação/metabolismo , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
14.
Ren Fail ; 46(1): 2313176, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38482886

RESUMO

OBJECTIVE: This study was designed to observe the effect of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway activity on sepsis-associated acute kidney injury (SA-AKI), thereby providing new considerations for the prevention and treatment of SA-AKI. METHODS: The rats were divided into Sham, cecal ligation and puncture (CLP), CLP + vehicle, and CLP + TAK-242 groups. Except the Sham group, a model of CLP-induced sepsis was established in other groups. After 24 h, the indicators related to kidney injury in blood samples were detected. The pathological changes in the kidneys were observed by hematoxylin-eosin staining, and tubular damage was scored. Oxidative stress-related factors, mitochondrial dysfunction-related indicators in each group were measured; the levels of inflammatory factors in serum and kidney tissue of rats were examined. Finally, the expression of proteins related to the TLR4/NF-κB signaling pathway was observed by western blot. RESULTS: Compared with the CLP + vehicle and CLP + TAK-242 groups, the CLP + TAK-242 group reduced blood urea nitrogen (BUN), creatinine (Cr), cystatin-C (Cys-C), reactive oxygen species (ROS), malondialdehyde (MDA), and inflammatory factors levels (p < 0.01), as well as increased superoxide dismutase (SOD) activity of CLP rats (p < 0.01). Additionally, TAK-242 treatment improved the condition of CLP rats that had glomerular and tubular injuries and mitochondrial disorders (p < 0.01). Further mechanism research revealed that TAK-242 can inhibit the TLR4/NF-κB signaling pathway activated by CLP (p < 0.01). Above indicators after TAK-242 treatment were close to those of the Sham group. CONCLUSION: TAK-242 can improve oxidative stress, mitochondrial dysfunction, and inflammatory response by inhibiting the activity of TLR4/NF-κB signaling pathway, thereby preventing rats from SA-AKI.


Assuntos
Injúria Renal Aguda , Doenças Mitocondriais , Sepse , Sulfonamidas , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
15.
Phytomedicine ; 128: 155344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493721

RESUMO

BACKGROUND: Among adults, stroke is the main causes of mortality and permanent disability. Neuroinflammation is one of the main causes of stoke-mediated neuronal death. Our previous study revealed that (E)-5-(2-(Quinolin-4-yl) vinyl) benzene-1, 3-diol (RV01), a quinolinyl analog of resveratrol, inhibits microglia-induced neuroinflammation and safeguards neurons from inflammatory harm. The preventive role of RV01 in ischemic stroke and its underlying cellular mechanisms and molecular targets remain poorly understood. PURPOSE: To investigate whether RV01 alleviates ischemia-reperfusion (I/R) injury by inhibiting microglia-mediated neuroinflammation and determine the potential molecular mechanisms and targets by which RV01 inhibits the I/R-mediated microglia activation. METHODS: Rat middle cerebral artery occlusion and reperfusion (MCAO/R) and BV-2 or primary microglial cells oxygen-glucose deprivation and reperfusion (OGD/R) models were established. The neurological behavior scores, 2, 3, 5-triphenyl tetrazolium chloride staining and immunofluorescence were used to detect the neuroprotective effect of RV01 in the MCAO/R rats. In addition, the mRNA expression levels of IL-6, TNF-α, and IL-1ß were detected to reveal the antineuroinflammatory effect of RV01. Moreover, a western blot assay was performed to explore the protein expression changes in NF-κB-mediated neuroinflammation. Finally, we identified TLR4 as an RV01 target through molecular docking, drug sensitivity target stability analysis, cellular thermal shift analysis, and surface plasmon resonance techniques. RESULTS: RV01 reduced the infarct volume and neurological deficits, increased the rotarod duration, and decreased the number of rightward deflections in the MCAO/R rats. RV01 inhibited the NF-κB signaling pathway in vitro and in vivo, as demonstrated by the reduction in the transcription factor p65-mediated expression of several inflammatory factors including IL-6, TNF-α, and IL-1ß. Further studies showed that its protective effect was associated with targeting the TLR4 protein. Notably, the anti-inflammatory effect of RV01 was markedly reinforced by the TLR4 knockdown, but inhibited by the overexpression of TLR4. Results revealed that the conditioned medium derived from the RV01-treated BV-2 cells significantly decreased the OGD/R-mediated neuronal damage. CONCLUSION: Our results are the first to reveal the protective effects of RV01 on cerebral ischemia, depending on its inhibitory effect on the NF-κB pathway by targeting TLR4. RV01 could be a potential protective agent in ischemic stroke treatment.


Assuntos
Anti-Inflamatórios , Infarto da Artéria Cerebral Média , Microglia , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Resveratrol , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Masculino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Microglia/efeitos dos fármacos , Resveratrol/farmacologia , Fármacos Neuroprotetores/farmacologia , Ratos , Anti-Inflamatórios/farmacologia , AVC Isquêmico/tratamento farmacológico , Modelos Animais de Doenças , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular
16.
Cardiovasc Diagn Ther ; 14(1): 158-173, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434564

RESUMO

Background: Doxorubicin (Dox) can induce cardiotoxicity, thereby restricting the utility of this potent drug. Herein, the study ascertained the mechanism of the N6-methyladenosine (m6A) demethylase fat mass and obesity-associated protein (FTO) in pyroptosis and inflammation during Dox-induced heart failure (HF). Methods: Serum samples were collected from HF patients for detection of the expression of FTO and toll-like receptor 4 (TLR4). Dox-treated H9C2 cardiomyocytes were chosen for in vitro HF modeling, followed by measurement of FTO and TLR4 expression. Cardiomyocytes were detected for viability, apoptosis, spatial distribution of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and the levels of lactic dehydrogenase, inflammatory factors, oxidative stress markers, and pyroptosis-related proteins. The m6A levels of mRNA were examined. RNA immunoprecipitation (RIP) and mRNA stability measurement were used to determine mRNA and protein expression, and RNA m6A dot blot and methylated-RIP assay were performed to detect m6A methylation levels. The expression of p-NF-κB p65 and p-IκB-α was measured by western blotting. Results: In the serum of HF patients, FTO was elevated while TLR4 was decreased. Dox treatment reduced FTO expression and increased m6A methylation levels and TLR4 expression in H9C2 cells. Overexpression of FTO and knockdown of TLR4 reduced apoptosis, cytotoxicity, inflammation, pyroptosis, oxidative stress, NLRP3 co-localization, and fluorescence intensity in Dox-induced H9C2 cells. Mechanistically, FTO resulted in reduced binding activity of YTHDF1 to TLR4 mRNA via m6A demethylation of TLR4, thus declining TLR4, p-NF-κB p65, and p-IκB-α expression. TLR4 knockdown counteracted the effects of FTO knockdown on Dox-induced H9C2 cells. Conclusions: FTO alleviated Dox-induced HF by blocking the TLR4/NF-κB pathway.

17.
Chem Pharm Bull (Tokyo) ; 72(2): 226-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417868

RESUMO

Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, has been developed as a safe immunostimulator on the basis of a structure-activity relationship study with trehalose 6,6'-dicorynomycolate. Our recent study indicated that vizantin acts as an effective Toll-like receptor-4 (TLR4) partial agonist to reduce the lethality of an immune shock caused by lipopolysaccharide (LPS). However, because vizantin has low solubility in water, the aqueous solution used in in vivo assay systems settles out in tens of minutes. Here, vizantin was chemically modified in an attempt to facilitate the preparation of an aqueous solution of the drug. This paper describes the concise synthesis of a water-soluble vizantin analogue in which all the hydroxyl groups of the sugar unit were replaced by sulfates. The vizantin derivative displayed micelle-forming ability in water and potent TLR-4 partial agonist activity.


Assuntos
Glicolipídeos , Lipopolissacarídeos , Trealose/análogos & derivados , Lipopolissacarídeos/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38361356

RESUMO

BACKGROUND: Cinnamic acid, an active compound in cinnamon spp., has anti-inflammatory and antioxidant characteristics and is favorable in managing inflammatory bowel diseases. OBJECTIVES: Evaluate cinnamic acid's effects on colitis in rats. METHODS: To induce colitis in experimental rats, excluding the sham group, a 4% intrarectal solution of acetic acid was administered. The rats were then given oral doses of cinnamic acid at 30, 45, and 90 mg/kg for two days. The animals were assessed for macroscopic and microscopic changes, and the levels of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and myeloperoxidase (MPO) were measured using Eliza kits. Additionally, real-time PCR was performed to examine the gene level of toll-like receptor 4 (TLR-4) in the colon. RESULTS: Effective reduction of inflammation in acetic acid-induced colitis was achieved through Cinnamic acid administration at doses of 45 and 90 mg/kg. The decrease was achieved by inhibiting the activities of TNF-α, IL-6, and MPO while downregulating the expression of TLR-4. It is important to note that macroscopic and microscopic evaluations were significant in determining the effectiveness of cinnamic acid in reducing inflammation. CONCLUSION: Downregulation of inflammatory cytokines and TLR-4 expression may contribute to cinnamic acid's anti-inflammatory effect.


Assuntos
Ácido Acético , Anti-Inflamatórios , Cinamatos , Colite , Modelos Animais de Doenças , Peroxidase , Receptor 4 Toll-Like , Animais , Masculino , Ratos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Interleucina-6/metabolismo , Peroxidase/metabolismo , Ratos Wistar , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Curr Stem Cell Res Ther ; 19(11): 1514-1524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204244

RESUMO

INTRODUCTION: Toll-like receptor 4 (TLR4) is a receptor that traditionally plays an important role in immunomodulation (regulation of the immune system) and the initiation of proinflammatory responses. TLR4 is used in the body to recognize molecular patterns of pathogens or damaged cells from outside. However, in recent years, it has also become clear that TLR4 can affect the immune system and the function of stem cells, especially mesenchymal stem cells. Therefore, understanding how TLR4 signaling works at the cellular and molecular level and using this knowledge in regenerative medicine could be potentially useful, especially in the treatment of adipose- derived mesenchymal stem cells (ADMSCs). How these cells can use TLR4 signaling when used to increase their regenerative potential and repair tissues is an area of research. AIMS: This study aims to elucidate the multifaceted role of TLR4-mediated signaling in ADMSCs. METHODS: Employing a comprehensive set of assays, including MTT for cell viability, flow cytometry for surface marker expression, and gene expression analysis, we demonstrate that TLR4 activation significantly modulates key aspects of ADMSC biology. Specifically, TLR4 signaling was found to regulate ADMSCs proliferation, surface marker expression, and regenerative capacity in a dose- and time-dependent manner. Furthermore, TLR4 activation conferred cytoprotective effects against Doxorubicin (DOX)-induced cellular apoptosis. RESULTS: These findings suggest that TLR4 signaling could be used to enhance the regenerative abilities of ADMSCs and enable ADMSC-based therapies to be used more effectively for tissue engineering and therapeutic purposes. CONCLUSION: However, it is important to note that research in this area needs more details and clinical studies.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Transdução de Sinais , Receptor 4 Toll-Like , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Humanos , Tecido Adiposo/citologia , Proliferação de Células , Apoptose , Diferenciação Celular , Regeneração , Células Cultivadas , Doxorrubicina/farmacologia , Sobrevivência Celular , Medicina Regenerativa
20.
Neurosci Res ; 204: 34-45, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38278218

RESUMO

Histones organize DNA within cellular nuclei, but they can be released from damaged cells. In peripheral tissues extracellular histones act as damage-associated molecular patterns (DAMPs) inducing pro-inflammatory activation of immune cells. Limited studies have considered DAMP-like activity of histones in the central nervous system (CNS); therefore, we studied the effects of extracellular histones on microglia, the CNS immunocytes, and on neuronal cells. Both the linker histone H1 and the core histone H3 induced pro-inflammatory activation of microglia-like cells by upregulating their secretion of NO and cytokines, including interferon-γ-inducible protein 10 (IP-10) and tumor necrosis factor-α (TNF). The selective inhibitors MMG-11 and TAK-242 were used to demonstrate involvement of toll-like receptors (TLR) 2 and 4, respectively, in H1-induced NO secretion by BV-2 microglia. H1, but not H3, downregulated the phagocytic activity of BV-2 microglia. H1 was also directly toxic to all neuronal cell types studied. We conclude that H1, and to a lesser extent H3, when released extracellularly, have the potential to act as a CNS DAMPs. Inhibition of the DAMP-like effects of extracellular histones on microglia and their neurotoxic activity represents a potential strategy for combating neurodegenerative diseases that are characterized by the adverse activation of microglia and neuronal death.


Assuntos
Histonas , Microglia , Neurônios , Histonas/metabolismo , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Citocinas/metabolismo , Doenças Neuroinflamatórias/metabolismo , Linhagem Celular , Óxido Nítrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA