Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Curr Oncol Rep ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361077

RESUMO

PURPOSE OF REVIEW: This review aims to describe the association of integrating traditional Chinese medicine (TCM) herbs into conventional medicine (CM) in preventing breast cancer and improving survival rates among breast cancer patients of Taiwan. RECENT FINDINGS: Of 7 relevant studies, spanning 2014-2023, 4 investigated breast cancer risk in women with menopausal symptoms and other comorbidities. All 4 reported that TCM herbal use was associated with lower risks of developing breast cancer. Three studies investigated survival in newly-diagnosed breast cancer patients receiving CM. All reported that adjunctive TCM users had lower mortality rates than CM-only patients. However, the heterogeneity of study designs, populations, and interventions may limit the generalizability and robustness of the findings. TCM herbs may promote breast cancer prevention and survival when used alongside CM. More rigorous observational research and clinical trials in specific patient populations are needed to guide clinical decision-making.

2.
Biomed Pharmacother ; 180: 117555, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39413616

RESUMO

Traumatic brain injury (TBI) exhibits high prevalence and mortality, but current treatments remain suboptimal. Traditional Chinese medicine (TCM) has long been effectively used for TBI intervention. Moreover, the recently discovered iron-dependent cell death pathway, known as ferroptosis, characterized by lipid peroxidation, as a key target in TCM-based treatments for TBI. This review provides a comprehensive overview of the latest advancements in TCM strategies targeting ferroptosis in TBI therapy, covering natural product monomers, classic formulas, and acupuncture/moxibustion. The review also addresses current challenges and outlines future research directions to further advance the development and application of TBI management strategies.

3.
Adv Mater ; : e2410312, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344553

RESUMO

Reliable, non-invasive, continuous monitoring of pulse and blood pressure is essential for the prevention and diagnosis of cardiovascular diseases. However, the pulse wave varies drastically among individuals or even over time in the same individual, presenting significant challenges for the existing pulse sensing systems. Inspired by pulse diagnosis methods in traditional Chinese medicine (TCM), this work reports a self-adaptive pressure sensing platform (PSP) that combines the fully printed flexible pressure sensor array with an adaptive wristband-style pressure system can identify the optimal pulse signal. Besides the detected pulse rate/width/length, "Cun, Guan, Chi" position, and "floating, moderate, sinking" pulse features, the PSP combined with a machine learning-based linear regression model can also accurately predict blood pressure such as systolic, diastolic, and mean arterial pressure values. The developed diagnostic platform is demonstrated for highly reliable long-term monitoring and analysis of pulse and blood pressure across multiple human subjects over time. The design concept and proof-of-the-concept demonstrations also pave the way for the future developments of flexible sensing devices/systems for adaptive individualized monitoring in the complex practical environments for personalized medicine, along with the support for the development of digital TCM.

4.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39338338

RESUMO

The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.

5.
Front Microbiol ; 15: 1429360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234553

RESUMO

Gegen Qinlian Decoction (GGQLT) is a traditional Chinese herbal medicine that has been reported to have a significant therapeutic effect in the management of type II diabetes mellitus (T2DM). In this study, we constructed a T2DM rat model by feeding a high-fat diet and injecting streptozotocin (STZ) and tested the effects of feeding GGQLT and fecal transplantation on the physiological indices, microbiota, and metabolism of rats. The results showed that the administration of GGQLT can significantly improve the growth performance of rats and has a remarkable antihyperlipidemic effect. In addition, GGQLT altered the composition of gut microbiota by increasing beneficial bacteria such as Coprococcus, Bifidobacterium, Blautia, and Akkermansia. In addition, GGQLT elevated levels of specific bile acids by metabolomic analysis, potentially contributing to improvements in lipid metabolism. These findings suggest that GGQLT may have beneficial effects on T2DM by influencing lipid metabolism and gut microbiota. However, further studies are needed to elucidate its mechanisms and assess clinical applications.

6.
Front Psychiatry ; 15: 1425757, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323969

RESUMO

Background: Body constitution is the foundation of Traditional Chinese Medicine (TCM), and model workers consist of a special group of workers within China. This study aims to research the relationship between the physical body constitutions based on TCM and the mental health of model workers. Methods: We recruited 314 model workers from Beijing Rehabilitation Hospital to conduct the questionnaires such as SCL-90 and CCMQ to investigate if there is an association between mental health status and TCM body constitutions. We performed a Partial Least Squares Path Modeling (PLS path modeling). Results: Our path model results revealed associations between different TCM constitution types and SCL scores, which serve as indicators of psychological well-being. Our research findings demonstrate a strong correlation between the Balanced constitution and elevated levels of psychological well-being, with a path coefficient of -0.503. In contrast, the other eight constitutional types exhibit path coefficients exceeding 0.3, indicating a tendency toward lower levels of psychological well-being. We also investigated the intricate connections between various TCM constitutional types and both mild and severe psychological well-being. Conclusion: In conclusion, the Balanced constitution continues to be closely associated with higher levels of psychological well-being, while the remaining eight body constitution types are consistently linked to lower levels of psychological well-being.

7.
Gels ; 10(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39330171

RESUMO

Chinese herbs are a huge treasure trove of natural products and an important source of many active molecules. The theory of traditional Chinese medicine compatibility (TCMC) is widely applied in clinical practice, but its mechanism is still ambiguous. This study aims to open a new window for this predicament by studying the interaction between the main active ingredients from a drug pair. Carrier-free assembly of natural products improves the shortcomings of traditional nanodelivery systems and opens a new path for the development of new nanomaterials. The drug pair "Pueraria and Hedyotis diffusa" has been commonly used in clinical practice, with a predominant therapeutic effect. This study is devoted to the study of the binary small molecule co-assembly of the main active molecules from the drug pair. In this study, we introduce a carrier-free composite gel, formed by the co-assembly of puerarin (PUE) and deacetylasperulosidic acid (DAA) via non-covalent bonds including π-π packing, intermolecular hydrogen bonding, and C=O π interactions. With a strain point 7-fold higher than that of P gel, the P - D gel exhibited favorable rheological properties. The survival rate of SW1990 cells in the P - D group was only 21.39% when the concentration of administration reached 200 µM. It thus demonstrated activity in inhibiting SW1990 cells' survival, suggesting potential in combating pancreatic cancer. Furthermore, this research offers a valuable concept for enhancing the mechanical properties and bioactivity of hydrogel materials through the utilization of a multi-component natural small molecule co-assembly approach. More importantly, this provides new ideas and methods for the treatment of pancreatic cancer and the analysis of traditional Chinese medicine compatibility theory.

8.
Phytomedicine ; 135: 156003, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39305742

RESUMO

BACKGROUND: Gastric cancer (GC) ranks as the fifth most prevalent malignancy worldwide. Conventional treatments, including radiotherapy and chemotherapy, often induce severe side effects and significant adverse reactions, and they may also result in drug resistance. Consequently, there is a critical need for the development of new therapeutic agents. Traditional Chinese Medicine (TCM) and natural products are being extensively researched due to their low toxicity, multi-targeted approaches, and diverse pathways. Scholars are increasingly focusing on identifying active anticancer components within TCM. PURPOSE: This review aims to summarise research conducted over the past 14 years on the treatment of GC using TCM. The focus is on therapeutic targets, mechanisms, and efficacy of Chinese medicine and natural products, including monomer compounds, extracts or analogues, and active ingredients. METHODS: Relevant articles on TCM and GC were retrieved from PubMed using appropriate keywords. The collected articles were screened and classified according to the types of TCM, with an emphasis on the molecular mechanisms underlying the treatment of GC. RESULTS: The research on TCM indicates that TCM and natural products can effectively inhibit the metastasis, proliferation, and invasion of tumour cells. They can also induce apoptosis, autophagy and improve the chemosensitivity of drug-resistant cells. Additionally, injections derived from Chinese herbal medicine, when used as an adjunct to conventional chemotherapy, can significantly improve the prognosis of GC patients by reducing chemotherapy toxicity. CONCLUSION: This review summarises the progress of TCM treatment of GC over the past 14 years, and discusses its therapeutic application of GC, which proves that TCM is a promising treatment strategy for GC in the future.

9.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4437-4449, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39307780

RESUMO

Traditional Chinese medicine(TCM) placebos are simulated preparations for specific objects and the color simulation in the development of TCM placebos is both crucial and challenging. Traditionally, the prescription screening and pattern exploration process involves extensive experimentation, which is both time-consuming and labor-intensive. Therefore, accurate prediction of color simulation prescriptions holds the key to the development of TCM placebos. In this study, we efficiently and precisely predict the color simulation prescriptions of placebos using an image-based approach combined with Matlab software. Firstly, images of TCM placebo solutions are captured, and 13 chromaticity space values such as the L* a* b*, RGB, HSV, and CMYK values are extracted using Photoshop software. Correlation analysis and normalization are then performed on these extracted values to construct a 13×9×3 back propagation(BP) neural network model. Subsequently, the whale optimization algorithm(WOA) is employed to optimize the initial weights and thresholds of the BP neural network. Finally, the optimized WOA-BP neural network is validated using three representative instances. The training and prediction results indicate that, compared to the BP neural network, the WOA-BP neural network demonstrates superior performance in predicting the pigment ratios of placebos. The correlation coefficients for training, validation,testing, and the overall dataset are 0. 95, 0. 87, 0. 95, and 0. 95, respectively, approaching unity. Furthermore, all error values are reduced, with the maximum reduction reaching 99. 83%. The color difference(ΔE) values for the three validation instances are all less than 3, further confirming the accuracy and practicality of the WOA-BP neural network approach.


Assuntos
Algoritmos , Cor , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Redes Neurais de Computação , Medicamentos de Ervas Chinesas/química , Placebos , Animais
10.
Bioorg Chem ; 152: 107731, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180863

RESUMO

BACKGROUND: Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb, PM) is a medicinal plant that was an element of traditional Chinese medicine (TCM) for centuries as a treatment for a wide range of conditions. Recent studies reported that PM suppressed prostate cancer growth in an AR-dependent manner. However, its role and mechanism in the treatment of advanced prostate cancer remain to be explored. This study aims to explore the anti-tumor role and potential mechanism of PM on prostate cancer. METHODS: Cell viability, colony formation, fluorescence-activated cell sorting (FACS), and wound-healing assays were conducted to evaluate the tumor suppression effect of PM on lethal prostate cancer models in vitro. A xenograft mice model was established to detect the impact of PM on tumor growth and evaluate its biosafety in vivo. Integrative network pharmacology, RNA-seq, and bioinformatics were applied to determine the mechanisms of PM in prostate cancer. Molecular docking, cellular thermal shift assay (CETSA), CRISPR-Cas13, RT-qPCR, and WB were collaboratively employed to identify the potential anti-tumor ingredient derived from PM and its corresponding targets. RESULTS: PM significantly suppressed the growth of prostate cancer and sensitized prostate cancer to AR antagonists. Mechanistically, PM induced G2/M-phase cell-cycle arrest by modulating the phosphorylation of CDK1. Additionally, polygalacic acid derived from PM and its structural analog suppress prostate cancer growth by targeting CDC25B, a master regulator of the cell cycle that governs CDK1 phosphorylation. CONCLUSION: PM and its ingredient polygalacic acid suppress lethal prostate cancer growth by regulating the CDC25B-CDK1 axis to induce cell cycle arrest.


Assuntos
Proteína Quinase CDC2 , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Neoplasias da Próstata , Fosfatases cdc25 , Masculino , Fosfatases cdc25/metabolismo , Fosfatases cdc25/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Camundongos Nus , Células Tumorais Cultivadas
11.
J Ethnopharmacol ; 335: 118659, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098622

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Endometriosis (EMS) is a common gynecological disease that causes dysmenorrhea, chronic pelvic pain and infertility. Luoshi Neiyi Prescription (LSNYP), a traditional Chinese medicine (TCM) formula, is used to relieve EMS in the clinic. AIMS: This study aimed to examine the active components of LSNYP and the possible mechanism involved in its treatment of EMS. MATERIALS AND METHODS: Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was used to identify the chemical components of LSNYP. Human primary ectopic endometrial stromal cells (ecESCs) and eutopic endometrial stromal cells (euESCs) were isolated, and the expression levels of hypoxia inducible factor 1A (HIF1A), enhancer of zeste homolog 2 (EZH2) and steroidogenic factor 1 (SF-1) were detected by immunofluorescence and qPCR. Cobalt chloride (CoCl2) was utilized to construct an in vitro hypoxic environment, and lentiviruses were engineered to downregulate HIF1A and EZH2 and upregulate EZH2. Subsequently, the expression levels of HIF1A, EZH2, and SF-1 were measured using qPCR or western blotting. The binding of EZH2 to the SF-1 locus in ESCs was examined via ChIP. Furthermore, the effects of LSNYP on the HIF1A/EZH2/SF-1 pathway were evaluated both in vitro and in vivo. RESULTS: A total of 185 components were identified in LSNYP. The protein and gene expression levels of HIF1A and SF-1 were increased, whereas those of EZH2 were decreased in ecESCs. After treating euESCs with 50 µmol L-1 CoCl2 for 24 h, cell viability and estradiol (E2) production were enhanced. Hypoxia decreased EZH2 protein expression, while si-HIF1A increased it. SF-1 was increased when EZH2 was downregulated in normal and hypoxic environments, whereas the overexpression of EZH2 led to a decrease in SF-1 expression. ChIP revealed that hypoxia reduced EZH2 binding to the SF-1 locus in euESCs. In vitro, LSNYP-containing serum decreased E2 and prostaglandin E2 (PGE2) production, inhibited cell proliferation and invasion, and reduced the expression of HIF1A, SF-1, steroidogenic acute regulatory protein (StAR), and aromatase cytochrome P450 (P450arom). In vivo, LSNYP suppressed inflammation and adhesion and inhibited the HIF1A/EZH2/SF-1 pathway in endometriotic tissues. CONCLUSIONS: LSNYP may exert pharmacological effects on EMS by inhibiting E2 synthesis and inflammation through regulation of the HIF1A/EZH2/SF-1 pathway. These results suggest that LSNYP may be a promising candidate for the treatment of EMS.


Assuntos
Medicamentos de Ervas Chinesas , Endometriose , Proteína Potenciadora do Homólogo 2 de Zeste , Estradiol , Subunidade alfa do Fator 1 Induzível por Hipóxia , Adulto , Animais , Feminino , Humanos , Camundongos , Células Cultivadas , Medicamentos de Ervas Chinesas/farmacologia , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Estradiol/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
12.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3963-3970, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099369

RESUMO

Intelligent manufacturing technologies, including databases, mathematical modeling, and information systems have played a significant role in process control, production management, and supply chain management in traditional Chinese medicine(TCM) industry. However, their ability to process and utilize unstructured data, such as research and development reports, batch production records, quality inspection records, and supplier documents, is relatively weak. For text, images, language, and other unstructured data, generative artificial intelligence(AI) technology has shown strong potential for development in extracting information, extracting knowledge, semantic retrieval, and content generation. Generative AI is expected to provide a feasible set of tools for the utilization of unstructured data resources in the TCM industry. Based on years of research and industrial application experience in TCM intelligent manufacturing technology, this study reviewed the current situation of intelligent manufacturing in TCM and the utilization of unstructured data, analyzed the application value of generative AI in the TCM manufacturing process and supply chain, summarized four typical application scenarios, including intelligent pharmaceutical knowledge base/knowledge graph, intelligent on-the-job trai-ning, intelligent production quality control, and intelligent supply chain. Furthermore, this study also explained the data collection and processing, business process design, application potential, and value of each scenario based on industry demands. Finally, based on the integration of generative AI and TCM industrial models, the study proposed a preliminary concept of a smart industrial brain for TCM, aiming to provide a reference for the application of AI technology in the field of TCM manufacturing.


Assuntos
Inteligência Artificial , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Humanos
13.
Transl Cancer Res ; 13(7): 3798-3813, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145086

RESUMO

Background: Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths globally. Current treatments often do not fully meet efficacy and quality of life expectations. Traditional Chinese medicine (TCM), particularly the Yiqi Sanjie formula, shows promise but lacks clear mechanistic understanding. This study addresses this gap by investigating the therapeutic effects and underlying mechanisms of Yiqi Sanjie formula in NSCLC. Methods: We utilized network pharmacology to identify potential NSCLC drug targets of the Yiqi Sanjie formula via the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Compounds with favorable oral bioavailability and drug-likeness scores were selected. Molecular docking was conducted using AutoDock Vina with structural data from the Protein Data Bank and PubChem. Molecular dynamics (MD) simulations were performed with Desmond Molecular Dynamics System, analyzing interactions up to 500 nanoseconds using the OPLS4 force field. ADMET predictions were executed using SwissADME and ADMETlab 2.0, assessing pharmacokinetic properties. Results: Using network pharmacology tools, we performed Search Tool for the Retrieval of Interaction Genes/Proteins (STRING) analysis for protein-protein interaction, Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway enrichment, and gene ontology (GO) for functional enrichment, identifying crucial signaling pathways and biological processes influenced by the hit compounds bifendate, xambioona, and hederagenin. STRING analysis indicated substantial connectivity among the targets, suggesting significant interactions within the cell cycle regulation and growth factor signaling pathways as outlined in our KEGG results. The GO analysis highlighted their involvement in critical biological processes such as cell cycle control, apoptosis, and drug response. Molecular docking simulations quantified the binding efficiencies of the identified compounds with their targets-CCND1, CDK4, and EGFR-selected based on high docking scores that suggest strong potential interactions crucial for NSCLC inhibition. Subsequent MD simulations validated the stability of these complexes, supporting their potential as therapeutic interventions. Additionally, the novel identification of ADH1B as a target underscores its prospective significance in NSCLC therapy, further expanded by our comprehensive bioinformatics approach. Conclusions: Our research demonstrates the potential of integrating network pharmacology and computational biology to elucidate the mechanisms of the Yiqi Sanjie formula in NSCLC treatment. The identified compounds could lead to novel targeted therapies, especially for patients with overexpressed targets. The discovery of ADH1B as a therapeutic target adds a new dimension to NSCLC treatment strategies. Further studies, both in vitro and in vivo, are needed to confirm these computational findings and advance these compounds towards clinical trials.

14.
Chin Med ; 19(1): 112, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169391

RESUMO

BACKGROUND: Squama Manis is a valuable traditional Chinese medicine with a long history of medicinal use in the treatment of breast-related diseases. However, owing to the excessive exploitation and utilization of the resources, Squama Manis has been included in the list of rare and endangered wild animals. The conservation of the resources of Squama Manis and continuing its clinical application has become an urgent problem, and the search for small-molecule substitutes for Squama Manis is an effective way to achieve this goal. Previous studies have identified PA3264 as a possible active ingredient in Squama Manis. In this study, we systematically investigated the pharmacological effects and mechanisms of PA3264 in the treatment of triple-negative breast cancer (TNBC), a representative breast-related disease. METHODS: Cell viability and colony formation assays were performed after treatment with the target dipeptide PA3264 in vitro. Next, 4T1 orthotopic tumors and humanized PBMC-CDX mouse models were generated to examine the antitumor effect of PA3264 in vivo. Transcriptome sequencing and molecular docking experiments were performed to predict pathways to function. Western blotting and quantitative real-time PCR were used to validate the molecular mechanisms underlying the anticancer effects of PA3264. RESULTS: PA3264 significantly inhibited cell viability and migration of breast cancer cells in vitro. Furthermore, PA3264 suppressed the tumor size and reduced the tumor weight in vivo. Finally, it was verified that PA3264 prevented the progression of breast cancer by inhibiting the PI3K/AKT/NF-κB pathway, causing cell cycle arrest, and promoting apoptosis. CONCLUSIONS: This study elucidated that PA3264 derived from rare and endangered Squama Manis was a novel bioactive peptide for treating triple-negative breast cancer from a scientific research perspective.

15.
Comput Biol Med ; 179: 108878, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39043107

RESUMO

Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Máquina de Vetores de Suporte , Internet
16.
Nutrients ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39064685

RESUMO

The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) are drug transporters that are expressed in the kidney, with well-established roles in the in vivo transport of drugs and endogenous metabolites. A comparatively unexplored potential function of these drug transporters is their contribution to the in vivo regulation of natural products (NPs) and their effects on endogenous metabolism. This is important for the evaluation of potential NP interactions with other compounds at the transporter site. Here, we have analyzed the NPs present in several well-established databases from Asian (Chinese, Indian Ayurvedic) and other traditions. Loss of OAT1 and OAT3 in murine knockouts caused serum alterations of many NPs, including flavonoids, vitamins, and indoles. OAT1- and OAT3-dependent NPs were largely separable based on a multivariate analysis of chemical properties. Direct binding to the transporter was confirmed using in vitro transport assays and protein binding assays. Our in vivo and in vitro results, considered in the context of previous data, demonstrate that OAT1 and OAT3 play a pivotal role in the handling of non-synthetic small molecule natural products, NP-derived antioxidants, phytochemicals, and nutrients (e.g., pantothenic acid, thiamine). As described by remote sensing and signaling theory, drug transporters help regulate redox states by meditating the movement of endogenous antioxidants and nutrients between organs and organisms. Our results demonstrate how dietary antioxidants and other NPs might feed into these inter-organ and inter-organismal pathways.


Assuntos
Antioxidantes , Produtos Biológicos , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Proteína 1 Transportadora de Ânions Orgânicos/genética , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Camundongos , Nutrientes/metabolismo , Camundongos Knockout , Humanos , Transporte Biológico , Rim/metabolismo , Flavonoides/farmacocinética , Flavonoides/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3152-3159, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041075

RESUMO

In recent years, the application of numerical simulation in the research and development(R&D) as well as the pharmaceutical processes of new drugs has expanded considerably. The discrete element method(DEM), an important approach among numerical simulation methods, offers an effective tool for the simulation of discontinuous media. Referring to the research progress of DEM and the formulation of solid traditional Chinese medicine(TCM) preparations in recent years, this paper summarizes and analyzes the application of DEM in the pharmaceutical processes of solid TCM preparations, and discusses the challenges of its application in these processes, in order to provide new methods and ideas for promoting the high-quality production of TCM preparations.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Química Farmacêutica/métodos , Composição de Medicamentos/métodos
18.
Brief Bioinform ; 25(5)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39073832

RESUMO

Herbal medicines, particularly traditional Chinese medicines (TCMs), are a rich source of natural products with significant therapeutic potential. However, understanding their mechanisms of action is challenging due to the complexity of their multi-ingredient compositions. We introduced Herb-CMap, a multimodal fusion framework leveraging protein-protein interactions and herb-perturbed gene expression signatures. Utilizing a network-based heat diffusion algorithm, Herb-CMap creates a connectivity map linking herb perturbations to their therapeutic targets, thereby facilitating the prioritization of active ingredients. As a case study, we applied Herb-CMap to Suhuang antitussive capsule (Suhuang), a TCM formula used for treating cough variant asthma (CVA). Using in vivo rat models, our analysis established the transcriptomic signatures of Suhuang and identified its key compounds, such as quercetin and luteolin, and their target genes, including IL17A, PIK3CB, PIK3CD, AKT1, and TNF. These drug-target interactions inhibit the IL-17 signaling pathway and deactivate PI3K, AKT, and NF-κB, effectively reducing lung inflammation and alleviating CVA. The study demonstrates the efficacy of Herb-CMap in elucidating the molecular mechanisms of herbal medicines, offering valuable insights for advancing drug discovery in TCM.


Assuntos
Antitussígenos , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos , Ratos , Antitussígenos/farmacologia , Antitussígenos/uso terapêutico , Mapas de Interação de Proteínas/efeitos dos fármacos , Asma/tratamento farmacológico , Asma/metabolismo , Asma/genética , Transdução de Sinais/efeitos dos fármacos , Tosse/tratamento farmacológico , Transcriptoma , Humanos
19.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3132-3143, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041073

RESUMO

The traditional Chinese medicine(TCM) single preparation refers to the innovative TCM made from the whole or the effective part(including the effective ingredient) extract of a TCM single herb by modern technology. They have a long history of applications, definite effects and few side effects. It is an indispensable part of the research of innovative TCM. In recent years, with the optimization of national policies, the development of TCM single preparation shows a positive trend. However, because of the imbalance in the composition ratio, the need for expansion of indications, the need for further basic research, and the low conversion rate of existing patent achievements in universities and institutes, the TCM single preparation still has significant development space. In this review, we analyze and study the current situation, characteristics and difficulties of TCM single preparation, as well as relevant clinical application, basic research, industrialization and patent application information through statistical analysis of TCM single preparations in the Chinese Pharmacopoeia, which helps to provide direction for the development and research of single preparation of TCM.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/química , Humanos
20.
BMC Complement Med Ther ; 24(1): 277, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039498

RESUMO

INTRODUCTION: Chronic inflammation is the major pathological feature of Atherosclerosis(As). Inflammation may accelerate plaque to develop, which is a key factor resulting in the thinning of the fibrous cap and the vulnerable rupture of plaque. Presently, clinical treatments are still lacking. It is necessary to find a safe and effective treatment for As inflammation. Simiaoyongan Decoction (SMYA) has potential anti-inflammatory and plaque protection effects. This protocol aims to evaluate the efficacy, safety, and mechanism of SMYA for patients with carotid atherosclerotic plaque. METHODS/DESIGN: The assessment of SMYA clinical trial is designed as a randomized, double-blind, placebo-controlled study. The sample size is 86 cases in total, with 43 participants in the intervention group and the control group respectively. The intervention group takes SMYA, while the control group takes SMYA placebo. The medication lasts for 14 days every 10 weeks, with a total of 50 weeks. We will use carotid artery high resolution magnetic resonance imaging (HR-MRI) to measure plaque. The plaque minimum fiber cap thickness (PMFCT) is adopted as the primary outcome. The secondary outcomes include plaque fiber cap volume, volume percentage of fiber cap, lipid-rich necrotic core (LRNC) volume, volume percentage of LRNC, internal bleeding volume of plaque, internal bleeding volume percentage of plaque, plaque calcification volume, volume percentage of plaque calcification, lumen stenosis rate, average and a maximum of vessel wall thickness, vessel wall volume, total vessel wall load, carotid atherosclerosis score, hs-CRP, IL-1ß and IL-6, the level of lipid profiles and blood glucose, blood pressure, and body weight. DISCUSSION: We anticipate that patients with As plaque will be improved from SMYA by inhibiting inflammation to enhance plaque stability. This study analyzes plaque by using HR-MRI to evaluate the clinical efficacy and safety of SMYA. Moreover, we conduct transcriptome analysis, proteomic analysis, and metagenomic analysis of blood and stool of participants to study the mechanism of SMYA against As plaque. This is the first prospective TCM trial to observe and treat As plaque by inhibiting inflammatory reaction directly. If successful, the finding will be valuable in the treatment of As plaque and drug development, especially in the "statin era". TRIAL REGISTRATION NUMBER: This trial is registered on Chinese Clinical Trials.gov with number ChiCTR2000039062 on October 15, 2020 ( http://www.chictr.org.cn ).


Assuntos
Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Método Duplo-Cego , Placa Aterosclerótica/tratamento farmacológico , Doenças das Artérias Carótidas/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA