Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Sci (China) ; 151: 652-666, 2025 May.
Artigo em Inglês | MEDLINE | ID: mdl-39481970

RESUMO

Studying the spatiotemporal distribution and transboundary transport of aerosols, NO2, SO2, and HCHO in typical regions is crucial for understanding regional pollution causes. In a 2-year study using multi-axis differential optical absorption spectroscopy in Qingdao, Shanghai, Xi'an, and Kunming, we investigated pollutant distribution and transport across Eastern China-Ocean, Tibetan Plateau-Central and Eastern China, and China-Southeast Asia interfaces. First, pollutant distribution was analyzed. Kunming, frequently clouded and misty, exhibited consistently high aerosol optical depth throughout the year. In Qingdao and Shanghai, NO2 and SO2, as well as SO2 in Xi'an, increased in winter. Elevated HCHO in summer in Shanghai and Xi'an, especially Xi'an, suggests potential ozone pollution issues. Subsequently, pollutant transportation across interfaces was studied. At the Eastern China-Ocean interface, the gas transport flux was the largest among other interfaces, with the outflux exceeding the influx, especially in winter and spring. The input of pollutants from the Tibetan Plateau to central-eastern China was larger than the output in winter and spring, with SO2 having the highest transport flux in winter. The pollution input from Southeast Asia to China significantly exceeded the output, with spring and winter inputs being 3.22 and 3.03 times the output, respectively. Lastly, the transportation characteristics of a pollution event at Kunming were studied. During this period, pollutants were transported from west to east, with the maximum SO2 transport flux at an altitude of 2.87 km equaling 27.74 µg/(m2·s). It is speculated that this pollution was caused by the transport from Southeast Asian countries to Kunming.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , China , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Aerossóis/análise , Estações do Ano
2.
Sci Total Environ ; 952: 175942, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39218113

RESUMO

Numerous studies have reported in situ monitoring and source analysis in the Tibetan Plateau (TP), a region crucial for climate systems. However, a gap remains in understanding the comprehensive distribution of atmospheric pollutants in the TP and their transboundary pollution transport. Here, we analyzed the high-resolution satellite TROPOMI observations from 2018 to 2023 in Tibet and its surrounding areas. Our result reveals that, contrary to the results from in situ surface CO monitoring, Tibet exhibits a distinct seasonality in atmospheric carbon monoxide total column average mixing ratio (XCO), with higher levels in summer and lower levels in winter. This distinctive seasonal pattern may be related to the TP's 'air pump' effect and the Asia summer monsoon. Before 2022, the annual growth rate of XCO in Tibet was 1.63 %·year-1; however, it declined by 6.88 % in 2022. Source analysis and satellite observations suggest that CO from South Asia may enter Tibet either by crossing the Himalayas or through the Yarlung Zangbo Grand Canyon. We discovered that spring outbreaks of open biomass burning (OBB) in South and Southeast Asia led to an 11.57-27.98 % increase in XCO over Tibet. Favorable wind pattern and unique topography of the canyon promote the high concentrations CO transport to Tibet. Our greater concern is whether the TP will experience more severe transboundary pollution in the future.

3.
J Hazard Mater ; 466: 133328, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290336

RESUMO

Airborne aerosols were collected in six size classes (PM<0.1, PM0.1-0.5, PM0.5-1, PM1-2.5, PM2.5-10 and PM>10) to investigate aerosol health risks in remote and industrial areas in Japan. We focused on heavy metals and their water-dispersed fractions. The average concentration of heavy metals was 18 ± 25-86 ± 48 ngm-3 for PM<0.1, 46 ± 19-154 ± 80 for PM0.5-1 ngm-3, 98 ± 49-422 ± 186 ngm-3 for PM1-2.5, 321 ± 305-1288 ± 727 ngm-3 for PM2.5-10 and 65 ± 52-914 ± 339 ngm-3 or PM>10, and these concentrations were higher in industrial areas. Heavy metals emitted from domestic anthropogenic sources were added to the long-range transport component of the aerosols. The water-dispersed fraction of heavy metals contained 3.3-40.1% of the total heavy metals in each size class. The relative contribution of Zn and other species (As, Cd, Cr, Ni, Pb, Mn, V and Cu) increased in the water-dispersed fraction. Smaller particles contained greater proportions of the water-dispersed heavy metal fraction. Carcinogenic risk (CR) and the hazard index (HI) were estimated for each size class. The CR of carcinogens was at acceptable levels (<1 ×10-6) for five particle size fractions. The HI values for carcinogens and noncarcinogens were also below acceptable levels (<1) for the same five size fractions. The estimated CR and HI values were dominated by contributions from the inhalation process.


Assuntos
Metais Pesados , Humanos , Japão , Medição de Risco , Metais Pesados/toxicidade , Metais Pesados/análise , Carcinógenos/análise , Aerossóis/toxicidade , Água , Monitoramento Ambiental , China
4.
Environ Monit Assess ; 195(9): 1127, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650945

RESUMO

Since December 30, 2017, the Seoul Metropolitan Government, Republic of Korea, has been implementing emergency reduction measures (ERMs) restricting the operation of industrial sites, thermal power plants, and vehicles when air quality is expected to deteriorate. ERMs are implemented when the present observed concentration of particulate matter (PM) of aerodynamic diameter less than 2.5 µm (PM2.5) and/or the predicted values for the following day exceed a threshold value. In this study, the effectiveness of ERMs was evaluated for 33 days with and 6 days without ERM implementation but where the PM2.5 concentration exceeded the threshold value, until March 15, 2021. Of the 33 days of ERM implementation, on 7 days it was executed despite the thresholds not being met. The ERM on these days might have been properly executed because the pre-notice and implementation of ERM might have reduced the local emissions of air pollutants. Our major findings are that even on days of ERM implementation, there were marginal reductions in vehicle traffic, thermal power generation, and industrial emissions. Second, the concentrations of PM2.5 and related air pollutants in Seoul were almost unchanged for most ERM implementation episodes. Third, most of the 39 (= 33 + 6) days when the air quality worsened were caused by the transboundary transport of air pollutants from China. In conclusion, it was revealed that the currently executed ERM law is insufficient for effectively reducing PM2.5. To achieve the required reductions, it is necessary to undertake stricter policies in Seoul and its neighboring regions.


Assuntos
Poluentes Atmosféricos , Material Particulado , Seul , Monitoramento Ambiental , República da Coreia
5.
Mar Pollut Bull ; 191: 114982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121185

RESUMO

The seasonal monsoon variations have significant impact on the atmospheric transport of semi-volatile organic pollutants over the South China Sea (SCS). We analyzed polycyclic aromatic hydrocarbons (PAHs) over the basin and island areas (Yongxing Island and Yongshu Island) in 2017. Gaseous PAHs (0.17-1.4 ng m-3) showed spatio-temporal distinctions in their composition and sources among the basin and island areas. Mixed combustion sources of PAHs were identified over the SCS, including a petroleum source near the island areas. The transport routes of PAHs were inferred by the air mass back trajectories and potential source contribution factor analysis, identifying strong biomass burning signals from the Indochina Peninsula and other Southeast Asian countries. Emissions from approximately 90 % of the combustion sources were transported to basin areas by monsoons, whereas the island areas were dominated by local emissions. This study emphasizes the main potential terrestrial source of PAHs over the SCS under monsoon influences.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Gases , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Biomassa , Estações do Ano , Monitoramento Ambiental
6.
J Hazard Mater ; 446: 130678, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608578

RESUMO

Taking Beijing-Tianjin-Hebei (BTH) with severe atmospheric mercury (Hg) and PM2.5 pollution as a typical region, this study clarified the characteristics and transboundary transport of atmospheric Particulate Bound Mercury (PBM2.5) affected by the East Asian monsoon. Five sampling sites were conducted in rural, suburban, urban, industrial, and coastal areas of BTH from northwest to southeast along the East Asian monsoon direction. PBM2.5 showed increasing concentrations from northwest to southeast and negative δ202Hg values, indicating significant contributions from anthropogenic sources. However, the mean Δ199Hg values of PBM2.5 at the five sites were significantly positive, probably triggered by the photoreduction of Hg(II) during long-range transport driven by the East Asian monsoon. Apart from local anthropogenic emissions as the primary sources, the transboundary transport of PBM2.5, driven by west and northwest air masses originating in Central Asia and Russia, contributed significantly to the PBM2.5 pollution of BTH. Moreover, these air masses reaching BTH would carry elevated PBM2.5 concentrations further transported to the ocean by the East Asian monsoon. In contrast, the southeast air masses transported from the ocean by the East Asian monsoon in summer diluted inland PBM2.5 pollution. This study provides insight into the atmospheric Hg circulation affected by the East Asian monsoon.

7.
Sci Total Environ ; 849: 157785, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35931145

RESUMO

Ozone in the troposphere is harmful to human health and ecosystems. It has become the most severe air pollutant in China. Here, based on global atmospheric chemistry model simulations during 1981-2019 and nation-wide surface observations, the impacts of interannual variations in Asian summer monsoon (ASM), including East Asian summer monsoon (EASM) and South Asian summer monsoon (SASM), on surface O3 concentrations during June-July-August (JJA) in China are investigated. EASM intensity has a significant positive correlation with the surface O3 concentration in south-central China (97.5°-117.5°E, 20°-35°N) with a correlation coefficient of 0.6. Relative to the weak EASM years, O3 concentrations in strong EASM years increased by up to 5 ppb (10 % relative to the average) due to the weakened transboundary transport of O3 resulting from the decrease in prevailing southwesterlies. SASM can be divided into two components. The one near East Asia has a similar relation with O3 in southern China (100°-117.5°E, 22°-32°N) as that of EASM. The other component of SASM is negatively correlated with surface O3 concentration in eastern China (110°-117.5°E, 22°-34°N) and the maximum difference in O3 concentrations exceeded 5 ppb (10 %) between the strong and weak monsoon years, which can be explained by the O3 divergence caused by the anomalous southerlies blowing pollutants away from the northern boundary of eastern China. This study shows that the ASM has an important impact on the O3 concentrations in China, primarily through changing transboundary transport related to the variability of large-scale circulations, which has great implications for air pollution prevention and mitigation in China. Future projections of ASM suggests that the sustainable and medium development scenarios are the perfect pathways that can help to mitigate O3 pollution, while high social vulnerability and radiative forcing scenarios could enhance future O3 pollution in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , China , Ecossistema , Monitoramento Ambiental , Humanos , Ozônio/análise , Estações do Ano
8.
Sci Total Environ ; 797: 148876, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311358

RESUMO

Heavy haze with high levels of fine particulate matters (PM2.5) frequently engulfs the Guanzhong Basin (GZB) in northwestern China during wintertime. Although it is an enclosed basin with a narrow opening to the east, prevailing easterly winds during heavy haze episodes have a large potential to bring air pollutants to the GZB from the two highly polluted neighboring provinces of Shanxi and Henan (SX&HN). The source-oriented WRF-Chem model simulations of a persistent and heavy haze episode that occurred in the GZB from December 6 to 21, 2016, reveal that local emissions dominate PM2.5 concentrations in the GZB, with an average near-surface PM2.5 contribution of about 56.0% during the episode. The transboundary transport of emissions from SX&HN accounts for around 22.2% of the total PM2.5 in the GZB. Furthermore, with the deterioration of the air quality in the GZB from being slightly polluted to severely polluted in terms of hourly PM2.5 concentration, transboundary transport of emissions from SX&HN plays an increasingly important role in the particulate pollution, with the average PM2.5 contribution increasing from 8.0% to 27.5%. Compared with the source-oriented method (SOM), the brute force method (BFM) overestimates the contribution of GZB local emissions and transboundary transport of emissions from SX&HN to the total PM2.5 in the GZB. In addition, the BFM-estimated NH3 contribution of transboundary transport of emissions from SX&HN is negative, indicating the limitation of the BFM in source apportionment. Our results suggest that cooperative emission mitigation strategies with neighboring provinces are beneficial for lowering the particulate pollution in the GZB, particularly under severely polluted conditions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
9.
Sci Total Environ ; 795: 148748, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328942

RESUMO

The sampling campaign of PM2.5 was carried out in Kitakyushu City on the western edge of Japan from 2013 to 2019, and 29 heavy metals loaded in PM2.5 were measured in this study. During the whole sampling period, the PM2.5 mass concentration ranged from 6.3 µg·m-3 to 57.5 µg·m-3, with a median value of 21.3 µg·m-3, and the sum concentration of heavy metals only accounted for 3%. According to the enrichment factor (EF) and geo-accumulation index (Igeo) analysis, it can be known that Se, Mo, Pb, As, Zn, W, Sb, Cu, V, Cr, Ni, and Cs were mainly from anthropogenic sources, which had EF values larger than 10 and Igeo values larger than 0. The comprehensive ecological risk index for these 12 anthropogenic metals was far greater than 600. This large index showed severe metal pollution and very high ecological risk in the urban area of Kitakyushu, Japan, which should be paid great attention. The human health assessment result further revealed that children living at the sampling site faced severe non-carcinogenic risk (HI = 7.8) and moderate carcinogenic risk (CR = 1.2 × 10-4), and oral ingestion was basically the most important exposure pathway, followed by dermal contact and inhalation. The priority control metals included Mo, Se, As, Pb, Sb, and Cr; moreover, the concentration-weighted trajectory analysis (CWT) indicated that Mo, Sb, and Cr were from ship emissions because some shipping routes around the Kyushu area were identified as their potential pollution source regions, while Se, As, and Pb were carried by the air masses from the Asian landmass. Overall, although the PM2.5 concentration in the urban area of Kitakyushu, Japan was not high, the heavy metal risk cannot be overlooked; it is necessary to strengthen the source control of high-risk metals and raise public protection awareness.


Assuntos
Monitoramento Ambiental , Metais Pesados , Criança , China , Humanos , Japão , Metais Pesados/análise , Material Particulado/análise , Medição de Risco
10.
Environ Pollut ; 273: 116421, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460873

RESUMO

High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOx, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOx emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1-4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.

11.
Sci Total Environ ; 691: 779-788, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326801

RESUMO

High emissions of air pollutants from Northeast Asia are strongly influenced by air quality as well as by ecosystems. This study investigated the spatiotemporal variations in the sulfur isotopic ratio (δ34S) in atmospheric deposition at eleven monitoring stations in Japan from 2011 to 2016 and estimated the amount of transboundary transported anthropogenic sulfate (TRB) deposition using mass balance calculations. The δ34S of sulfate in precipitation ranged from -0.42 to +22.7‰. Sea salt (SS), TRB, and domestic anthropogenic sources (DOM) were the dominant sources of sulfate deposition in Japan. TRB sulfate deposition was largest on the Sea of Japan side, with an annual average value of 1.5 ±â€¯0.3-6.9 ±â€¯0.5 mg m-2 d-1 (36-44%), followed by Mt. Happo (4.5 ±â€¯0.1 mg m-2 d-1; 88%), the Pacific Ocean side (1.5 ±â€¯0.8, 4.3 ±â€¯0.9 mg m-2 d-1; 24-50%), and the remote islands in the North Pacific Ocean (1.1 ±â€¯0.2, 2.0 ±â€¯0.8 mg m-2 d-1; 19-32%). TRB sulfate deposition on the Sea of Japan side was 2-12 times higher in winter and 1-2 times higher in summer than that of DOM. In contrast, TRB sulfate deposition on the Pacific Ocean side was 1.5-3 times higher in summer than in winter due to high precipitation levels. In Tokyo, the annual contribution from DOM sulfate deposition is approximately three times higher than that from TRB. Annual TRB sulfate deposition is lowest at Ogasawara at 1.1 ±â€¯0.2 mg m-2 d-1, and the annual oceanic DMS contribution to sulfate deposition is high, accounting for 1.3 mg m-2 d-1 (20 ±â€¯6%). The contribution of Asian dust was estimated to be 1-5.2 mg m-2 d-1(3-6%), which occurred in a single Asian dust event on the Sea of Japan side.

12.
Sci Total Environ ; 553: 617-625, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26970199

RESUMO

Sulfur isotopic ratios (δ(34)S) in size separated aerosol particles (PM2.5 and coarse particles) were measured at Niigata-Maki facing the Sea of Japan. Non-sea salt δ(34)S (δ(34)Snss) in PM2.5 showed seasonal variations with relatively high values in winter (1.0-3.9‰ in spring, 2.8-4.5‰ in summer, 1.3-4.5‰ in autumn, 3.7-5.7‰ in winter). Taking into consideration air mass transport routes, δ(34)Snss in the air masses which originated in the Asian continent and were transported over the Sea of Japan to the monitoring sites were higher than those values for air masses which were transported over the Japanese islands after leaving the Asian continent for each season. Considering that the δ(34)Snss in sulfuric acid derived from domestic emissions in Japan are lower than those of δ(34)Snss in coal, the lower δ(34)Snss for the air mass transported over the Japanese islands suggest that sulfuric acid in PM2.5 modified the δ(34)Snss due to aerosol mixing with sulfuric acid in Japan. Material balance calculations suggested that the relative contribution of transboundary transport in winter was also higher than for other seasons (40-75% in spring, 51-63% in summer, 45-73% in autumn, and 53-81% in winter). In particular, the contribution to the air masses which were transported directly from the Asian continent was relatively large (75% in spring, 59% in autumn, 78% in winter) in comparison with that for the air masses which were transported over Japan.

13.
Cent Eur J Public Health ; 24 Suppl: S45-S50, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28160537

RESUMO

OBJECTIVE: The Czech Hydrometeorological Institute (CHMI) estimated the transboundary transport of air pollution between the Czech Republic and Poland by assessing relationships between weather conditions and air pollution in the area as part of the "Air Quality Information System in the Polish-Czech border of the Silesian and Moravian-Silesian region" project (http://www.air-silesia.eu). Estimation of cross-border transport of pollutants is important for Czech-Polish negotiations and targeted measures for improving air quality. METHODS: Direct measurement of PM10 and sulphur dioxide (SO2) concentrations and the direction and wind speed from measuring stations in the vicinity of the Czech-Polish state border in 2006-2012. RESULTS: Taking into account all the inaccuracies, simplifications and uncertainties, by which all of the measurements are affected, it is possible to state that the PM10 transboundary transport was greater from the direction of Poland to the Czech Republic, rather than the other way around. Nevertheless, the highest share of the overall PM10 concentration load was recorded on days with a vaguely estimated airflow direction. This usually included days with changing wind direction or days with a distinct wind change throughout the given day. A changeable wind is most common during low wind speeds. It can be assumed that during such days with an ambiguous daily airflow, the polluted air saturated with sources on both sides of the border moves from one country to the other. Therefore, we could roughly ascribe an equal level of these concentrations to both the Czech and Polish side. CONCLUSIONS: PM10 transboundary transport was higher from Poland to the Czech Republic than from the opposite direction, despite the predominant air flow from the Czech Republic to Poland.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Dióxido de Enxofre/análise , Tempo (Meteorologia) , República Tcheca , Humanos , Material Particulado/análise , Polônia
14.
Environ Pollut ; 182: 324-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23973884

RESUMO

We analyzed the source-receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40 °N, 40-60%) and central China (30-40 °N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluição do Ar/estatística & dados numéricos , Ásia , Modelos Químicos , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA