Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Biol Chem ; 300(8): 107540, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971316

RESUMO

Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal noncanonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not poly(A)-binding protein, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of four putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes but only stimulates NGD of a small select set of transcripts, revealing a minor role of FMRP that would be misregulated in fragile X syndrome.

2.
Plant J ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39074058

RESUMO

The protein levels of chloroplast photosynthetic genes and genes related to the chloroplast genetic apparatus vary to adapt to different conditions. However, the underlying mechanisms governing these variations remain unclear. The chloroplast intron Maturase K is encoded within the trnK intron and has been suggested to be required for splicing several group IIA introns, including the trnK intron. In this study, we used RNA immunoprecipitation followed by high-throughput sequencing (RIP-Seq) to identify MatK's preference for binding to group IIA intron domains I and VI within target transcripts. Importantly, these domains are crucial for splice site selection, and we discovered alternative 5'-splice sites in three MatK target introns. The resulting alternative trnK lariat structure showed increased accumulation during heat acclimation. The cognate codon of tRNA-K(UUU) is highly enriched in mRNAs encoding ribosomal proteins and a trnK-matK over-expressor exhibited elevated levels of the spliced tRNA-K(UUU). Ribosome profiling analysis of the overexpressor revealed a significant up-shift in the translation of ribosomal proteins compared to photosynthetic genes. Our findings suggest the existence of a novel regulatory mechanism linked to the abundance of tRNA-K(UUU), enabling the differential expression of functional chloroplast gene groups.

3.
J Biol Chem ; 300(8): 107547, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992441

RESUMO

RNA thermometers are temperature-sensing non-coding RNAs that regulate the expression of downstream genes. A well-characterized RNA thermometer motif discovered in bacteria is the ROSE-like element (repression of heat shock gene expression). ATP-binding cassette (ABC) transporters are a superfamily of transmembrane proteins that harness ATP hydrolysis to facilitate the export and import of substrates across cellular membranes. Through structure-guided bioinformatics, we discovered that ROSE-like RNA thermometers are widespread upstream of ABC transporter genes in bacteria. X-ray crystallography, biochemistry, and cellular assays indicate that these RNA thermometers are functional regulatory elements. This study expands the known biological role of RNA thermometers to these key membrane transporters.

4.
Biochem Soc Trans ; 52(3): 1317-1325, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38695725

RESUMO

Ribosomes are universally conserved cellular machines that catalyze protein biosynthesis. The active sites underly immense evolutionary conservation resulting in virtually identical core structures of ribosomes in all domains of life including organellar ribosomes. However, more peripheral structures of cytosolic ribosomes changed during evolution accommodating new functions and regulatory options. The expansion occurred at the riboprotein level, including more and larger ribosomal proteins and at the RNA level increasing the length of ribosomal RNA. Expansions within the ribosomal RNA occur as clusters at conserved sites that face toward the periphery of the cytosolic ribosome. Recent biochemical and structural work has shed light on how rRNA-specific expansion segments (ESs) recruit factors during translation and how they modulate translation dynamics in the cytosol. Here we focus on recent work on yeast, human and trypanosomal cytosolic ribosomes that explores the role of two specific rRNA ESs within the small and large subunit respectively. While no single regulatory strategy exists, the absence of ESs has consequences for proteomic stability and cellular fitness, rendering them fascinating evolutionary tools for tailored protein biosynthesis.


Assuntos
Biossíntese de Proteínas , RNA Ribossômico , Ribossomos , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Humanos , Ribossomos/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
5.
J Biol Chem ; 300(6): 107360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735477

RESUMO

The nascent polypeptide chains passing through the ribosome tunnel not only serve as an intermediate of protein synthesis but also, in some cases, act as dynamic genetic information, controlling translation through interaction with the ribosome. One notable example is Escherichia coli SecM, in which translation of the ribosome arresting peptide (RAP) sequence in SecM leads to robust elongation arrest. Translation regulations, including the SecM-induced translation arrest, play regulatory roles such as gene expression control. Recent investigations have indicated that the insertion of a peptide sequence, SKIK (or MSKIK), into the adjacent N-terminus of the RAP sequence of SecM behaves as an "arrest canceler". As the study did not provide a direct assessment of the strength of translation arrest, we conducted detailed biochemical analyses. The results revealed that the effect of SKIK insertion on weakening SecM-induced translation arrest was not specific to the SKIK sequence, that is, other tetrapeptide sequences inserted just before the RAP sequence also attenuated the arrest. Our data suggest that SKIK or other tetrapeptide insertions disrupt the context of the RAP sequence rather than canceling or preventing the translation arrest.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Biossíntese de Proteínas , Ribossomos , Ribossomos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Biossíntese de Proteínas/efeitos dos fármacos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Sequência de Aminoácidos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Fatores de Transcrição
6.
Int J Biol Macromol ; 268(Pt 2): 132004, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697435

RESUMO

Ribosomes, intercellular macromolecules responsible for translation in the cell, are composed of RNAs and proteins. While rRNA makes the scaffold of the ribosome and directs the catalytic steps of protein synthesis, ribosomal proteins play a role in the assembly of the subunits and are essential for the proper structure and function of the ribosome. To date researchers identified heterogeneous ribosomes in different developmental and growth stages. We hypothesized that under stress conditions the heterogeneity of the ribosomes may provide means to prepare the cells for quick recovery. Therefore the aim of the study was the identification of heterogeneity of ribosomal proteins within the ribosomes in response to eleven stress conditions in Saccharomyces cerevisiae, by means of a liquid chromatography/high resolution mass spectrometry (LC-HRMS) and translation activity tests. Out of the total of 74 distinct ribosomal proteins identified in the study 14 small ribosomal subunit (RPS) and 8 large ribosomal subunit (RPL) proteins displayed statistically significant differential abundances within the ribosomes under stress. Additionally, significant alterations in the ratios of 7 ribosomal paralog proteins were observed. Accordingly, the translational activity of yeast ribosomes was altered after UV exposure, during sugar starvation, cold shock, high salt, anaerobic conditions, and amino acid starvation.


Assuntos
Biossíntese de Proteínas , Proteínas Ribossômicas , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649998

RESUMO

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Assuntos
Vírus da Dengue , Dengue , Vírus da Dengue/fisiologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Humanos , Dengue/virologia , Animais , Interações Hospedeiro-Patógeno , Replicação Viral
8.
Cell Rep ; 43(5): 114134, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38662542

RESUMO

Tumor MYCN amplification is seen in high-risk neuroblastoma, yet direct targeting of this oncogenic transcription factor has been challenging. Here, we take advantage of the dependence of MYCN-amplified neuroblastoma cells on increased protein synthesis to inhibit the activity of eukaryotic translation initiation factor 4A1 (eIF4A1) using an amidino-rocaglate, CMLD012824. Consistent with the role of this RNA helicase in resolving structural barriers in 5' untranslated regions (UTRs), CMLD012824 increased eIF4A1 affinity for polypurine-rich 5' UTRs, including that of the MYCN and associated transcripts with critical roles in cell proliferation. CMLD012824-mediated clamping of eIF4A1 spanned the full lengths of mRNAs, while translational inhibition was mediated through 5' UTR binding in a cap-dependent and -independent manner. Finally, CMLD012824 led to growth inhibition in MYCN-amplified neuroblastoma models without generalized toxicity. Our studies highlight the key role of eIF4A1 in MYCN-amplified neuroblastoma and demonstrate the therapeutic potential of disrupting its function.


Assuntos
Regiões 5' não Traduzidas , Fator de Iniciação 4A em Eucariotos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Proliferação de Células , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Neuroblastoma/tratamento farmacológico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Feminino , Camundongos Endogâmicos C57BL
9.
Cell Rep Methods ; 4(3): 100721, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452769

RESUMO

Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.


Assuntos
RNA Ribossômico , RNA , Animais , Camundongos , Humanos , RNA Mensageiro/genética , RNA/metabolismo , RNA Ribossômico/genética , Metilação , Metiltransferases/metabolismo
10.
Dev Cell ; 59(8): 1058-1074.e11, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38460509

RESUMO

During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.


Assuntos
Regiões 3' não Traduzidas , Oócitos , Poli A , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro , Animais , Oócitos/metabolismo , Oócitos/citologia , Poli A/metabolismo , Poli A/genética , Regiões 3' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Humanos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Xenopus laevis/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Citoplasma/metabolismo
11.
J Bacteriol ; 206(4): e0035423, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38319100

RESUMO

CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Mol Cell ; 84(6): 1078-1089.e4, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38340715

RESUMO

Aberrantly slow ribosomes incur collisions, a sentinel of stress that triggers quality control, signaling, and translation attenuation. Although each collision response has been studied in isolation, the net consequences of their collective actions in reshaping translation in cells is poorly understood. Here, we apply cryoelectron tomography to visualize the translation machinery in mammalian cells during persistent collision stress. We find that polysomes are compressed, with up to 30% of ribosomes in helical polysomes or collided disomes, some of which are bound to the stress effector GCN1. The native collision interface extends beyond the in vitro-characterized 40S and includes the L1 stalk and eEF2, possibly contributing to translocation inhibition. The accumulation of unresolved tRNA-bound 80S and 60S and aberrant 40S configurations identifies potentially limiting steps in collision responses. Our work provides a global view of the translation machinery in response to persistent collisions and a framework for quantitative analysis of translation dynamics in situ.


Assuntos
Biossíntese de Proteínas , Ribossomos , Animais , Ribossomos/genética , Ribossomos/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Mamíferos
13.
Adv Sci (Weinh) ; 11(17): e2309234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38380498

RESUMO

The CRISPR-Cas system, initially for DNA-level gene editing and transcription regulation, has expanded to RNA targeting with the Cas13d family, notably the RfxCas13d. This advancement allows for mRNA targeting with high specificity, particularly after catalytic inactivation, broadening the exploration of translation regulation. This study introduces a CRISPR-dCas13d-eIF4G fusion module, combining dCas13d with the eIF4G translation regulatory element, enhancing target mRNA translation levels. This module, using specially designed sgRNAs, selectively boosts protein translation in targeted tissue cells without altering transcription, leading to notable protein expression upregulation. This system is applied to a kidney stone disease model, focusing on ferroptosis-linked GPX4 gene regulation. By targeting GPX4 with sgRNAs, its protein expression is upregulated in human renal cells and mouse kidney tissue, countering ferroptosis and resisting calcium oxalate-induced cell damage, hence mitigating stone formation. This study evidences the CRISPR-dCas13d-eIF4G system's efficacy in eukaryotic cells, presenting a novel protein translation research approach and potential kidney stone disease treatment advancements.


Assuntos
Sistemas CRISPR-Cas , Oxalato de Cálcio , Modelos Animais de Doenças , Fator de Iniciação Eucariótico 4G , Ferroptose , Ferroptose/genética , Camundongos , Animais , Oxalato de Cálcio/metabolismo , Sistemas CRISPR-Cas/genética , Humanos , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Cálculos Renais/genética , Cálculos Renais/metabolismo , Biossíntese de Proteínas/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
14.
FASEB J ; 38(5): e23439, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38416461

RESUMO

Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.


Assuntos
Aterosclerose , Proteínas de Saccharomyces cerevisiae , Animais , Saccharomyces cerevisiae/genética , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio , Antioxidantes , Mamíferos , Fatores de Transcrição/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Cell Rep ; 43(2): 113802, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38368610

RESUMO

RNA helicases constitute a large protein family implicated in cellular RNA homeostasis and disease development. Here, we show that the RNA helicase IGHMBP2, linked to the neuromuscular disorder spinal muscular atrophy with respiratory distress type 1 (SMARD1), associates with polysomes and impacts translation of mRNAs containing short, GC-rich, and structured 5' UTRs. The absence of IGHMBP2 causes ribosome stalling at the start codon of target mRNAs, leading to reduced translation efficiency. The main mRNA targets of IGHMBP2-mediated regulation encode for components of the THO complex (THOC), linking IGHMBP2 to mRNA production and nuclear export. Accordingly, failure of IGHMBP2 regulation of THOC causes perturbations of the transcriptome and its encoded proteome, and ablation of THOC subunits phenocopies these changes. Thus, IGHMBP2 is an upstream regulator of THOC. Of note, IGHMBP2-dependent regulation of THOC is also observed in astrocytes derived from patients with SMARD1 disease, suggesting that deregulated mRNA metabolism contributes to SMARD1 etiology and may enable alternative therapeutic avenues.


Assuntos
Atrofia Muscular Espinal , Síndrome do Desconforto Respiratório do Recém-Nascido , Humanos , RNA Mensageiro/genética , Atrofia Muscular Espinal/genética , Regiões 5' não Traduzidas , Homeostase , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
16.
EMBO J ; 43(2): 151-167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200146

RESUMO

Coronaviruses are a group of related RNA viruses that cause respiratory diseases in humans and animals. Understanding the mechanisms of translation regulation during coronaviral infections is critical for developing antiviral therapies and preventing viral spread. Translation of the viral single-stranded RNA genome in the host cell cytoplasm is an essential step in the life cycle of coronaviruses, which affects the cellular mRNA translation landscape in many ways. Here we discuss various viral strategies of translation control, including how members of the Betacoronavirus genus shut down host cell translation and suppress host innate immune functions, as well as the role of the viral non-structural protein 1 (Nsp1) in the process. We also outline the fate of viral RNA, considering stress response mechanisms triggered in infected cells, and describe how unique viral RNA features contribute to programmed ribosomal -1 frameshifting, RNA editing, and translation shutdown evasion.


Assuntos
Infecções por Coronavirus , Coronavirus , Animais , Humanos , Coronavirus/genética , Infecções por Coronavirus/genética , Betacoronavirus/fisiologia , Antivirais/farmacologia , RNA Viral/genética
17.
Open Biol ; 14(1): 230366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38290548

RESUMO

Ribosomal protein uS10, a product of the RPS20 gene, is an essential constituent of the small (40S) subunit of the human ribosome. Disruptive mutations in its gene are associated with a predisposition to hereditary colorectal carcinoma. Here, using HEK293T cells, we show that a deficiency of this protein leads to a decrease in the level of ribosomes (ribosomal shortage). RNA sequencing of the total and polysome-associated mRNA samples reveals hundreds of genes differentially expressed in the transcriptome (t)DEGs and translatome (p)DEGs under conditions of uS10 deficiency. We demonstrate that the (t)DEG and (p)DEG sets partially overlap, determine genes with altered translational efficiency (TE) and identify cellular processes affected by uS10 deficiency-induced ribosomal shortage. We reveal that translated mRNAs of upregulated (p)DEGs and genes with altered TE in uS10-deficient cells are generally more abundant and that their GC contents are significantly lower than those of the respective downregulated sets. We also observed that upregulated (p)DEGs have longer coding sequences. Based on our findings, we propose a combinatorial model describing the process of reorganization of mRNA translation under conditions of ribosomal shortage. Our results reveal rules according to which ribosomal shortage reorganizes the transcriptome and translatome repertoires of actively proliferating cells.


Assuntos
Proteínas Ribossômicas , Ribossomos , Humanos , Composição de Bases , Células HEK293 , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Cell Biosci ; 14(1): 10, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238831

RESUMO

BACKGROUND: METTL3 plays a significant role as a catalytic enzyme in mediating N6-methyladenosine (m6A) modification, and its importance in tumour progression has been extensively studied in recent years. However, the precise involvement of METTL3 in the regulation of translation in non-small cell lung cancer (NSCLC) remains unclear. RESULTS: Here we discovered by clinical investigation that METTL3 expression is correlated with NSCLC metastasis. Ablation of METTL3 in NSCLC cells inhibits invasion and metastasis in vitro and in vivo. Subsequently, through translatomics data mining and experimental validation, we demonstrated that METTL3 enhances the translation of aromatase (CYP19A1), a key enzyme in oestrogen synthesis, thereby promoting oestrogen production and mediating the invasion and metastasis of NSCLC. Mechanistically, METTL3 interacts with translation initiation factors and binds to CYP19A1 mRNA, thus enhancing the translation efficiency of CYP19A1 in an m6A-dependent manner. Pharmacological inhibition of METTL3 enzymatic activity or translation initiation factor eIF4E abolishes CYP19A1 protein synthesis. CONCLUSIONS: Our findings indicate the crucial role of METTL3-mediated translation regulation in NSCLC and reveal the significance of METTL3/eIF4E/CYP19A1 signaling as a promising therapeutic target for anti-metastatic strategies against NSCLC.

19.
Methods Mol Biol ; 2741: 73-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217649

RESUMO

Noncoding RNAs, including regulatory RNAs (sRNAs), are instrumental in regulating gene expression in pathogenic bacteria, allowing them to adapt to various stresses encountered in their host environments. Staphylococcus aureus is a well-studied model for RNA-mediated regulation of virulence and pathogenicity, with sRNAs playing significant roles in shaping S. aureus interactions with human and animal hosts. By modulating the translation and/or stability of target mRNAs, sRNAs regulate the synthesis of virulence factors and regulatory proteins required for pathogenesis. Moreover, perturbation of the levels of RNA modifications in two other classes of noncoding RNAs, rRNAs, and tRNAs, has been proposed to contribute to stress adaptation. However, the study of how these various factors affect translation regulation has often been restricted to specific genes, using in vivo reporters and/or in vitro translation systems. Genome-wide sequencing approaches offer novel perspectives for studying RNA-dependent regulation. In particular, ribosome profiling methods provide a powerful resource for characterizing the overall landscape of translational regulation, contributing to a better understanding of S. aureus physiopathology. Here, we describe protocols that we have adapted to perform ribosome profiling in S. aureus.


Assuntos
Perfil de Ribossomos , Staphylococcus aureus , Animais , Humanos , Staphylococcus aureus/metabolismo , Regulação da Expressão Gênica , RNA Ribossômico/genética , RNA Mensageiro/genética , Regulação Bacteriana da Expressão Gênica
20.
Semin Cell Dev Biol ; 154(Pt B): 155-164, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36963991

RESUMO

Translation is regulated spatiotemporally to direct protein synthesis when and where it is needed. RNA localization and local translation have been observed in various subcellular compartments, allowing cells to rapidly and finely adjust their proteome post-transcriptionally. Local translation on membrane-bound organelles is important to efficiently synthesize proteins targeted to the organelles. Protein-RNA phase condensates restrict RNA spatially in membraneless organelles and play essential roles in translation regulation and RNA metabolism. In addition, the temporal translation kinetics not only determine the amount of protein produced, but also serve as an important checkpoint for the quality of ribosomes, mRNAs, and nascent proteins. Translation imaging provides a unique capability to study these fundamental processes in the native environment. Recent breakthroughs in imaging enabled real-time visualization of translation of single mRNAs, making it possible to determine the spatial distribution and key biochemical parameters of in vivo translation dynamics. Here we reviewed the recent advances in translation imaging methods and their applications to study spatiotemporal translation regulation in vivo.


Assuntos
Biossíntese de Proteínas , Ribossomos , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Organelas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA