Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Infect Dis Model ; 10(1): 139-149, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39380723

RESUMO

Introduction: Since November 2023, influenza has ranked first in reported cases of infectious diseases in China, with the outbreak in both northern and southern provinces exceeding the levels observed during the same period in 2022. This poses a serious health risk to the population. Therefore, short to medium-term influenza predictions are beneficial for epidemic assessment and can reduce the disease burden. Methods: A transmission dynamics model considering population migration, encompassing susceptible-exposed-infectious-asymptomatic-recovered (SEIAR) was used to predict the dynamics of influenza before the Spring Festival travel rush. Results: The overall epidemic shows a declining trend, with the peak expected to occur from week 47 in 2023 to week 1 in 2024. The number of cases of A (H3N2) is greater than that of influenza B, and the influenza situation is more severe in the southern provinces compared to the northern ones. Conclusion: Our method is applicable for short-term and medium-term influenza predictions. As the spring festival travel rush approaches. Therefore, it is advisable to advocate for nonpharmaceutical interventions (NPIs), influenza vaccination, and other measures to reduce healthcare and public health burden.

2.
Front Microbiol ; 15: 1416580, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39397798

RESUMO

The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.

3.
Microb Genom ; 10(10)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39412871

RESUMO

Vibrio cholerae is a Gram-negative bacterium found in aquatic environments and is the aetiological agent of cholera, characterized by acute watery diarrhoea and severe dehydration. Cholera presents a significant global health burden of an estimated 1.3-5 million annual cases, with the current pandemic caused by a toxigenic lineage of the O1 El Tor biotype called seventh pandemic El Tor (7PET) that is still ongoing. Whilst it is known that non-7PET lineages can cause sporadic disease, little is known about the transmission of these non-epidemic lineages. Thirty-four V. cholerae isolates were obtained from travellers returning from Indonesia to Australia between 2005 and 2017. These were whole genome sequenced, placed into a global phylogenetic context with 883 isolates, and screened for known genes associated with antimicrobial resistance and virulence. This analysis revealed that 30 isolates fell within non-7PET lineages and four within the 7PET lineage. Both 7PET and non-7PET isolates carried genes for resistance to antibiotics that are commonly used in cholera treatment such as tetracyclines and fluoroquinolones. Diverse virulence factors were also present in non-7PET isolates, with two isolates notably carrying toxin-coregulated pilus genes, which are primarily responsible for intestinal colonization in 7PET V. cholerae. This study demonstrates the role of travel in long-range carriage of epidemic and non-epidemic lineages of V. cholerae, and how sentinel travel surveillance can enrich our knowledge of V. cholerae diversity, reveal new biology about the spread of diverse lineages with differing disease potential and illuminate disease presence in endemic regions with limited surveillance data.


Assuntos
Cólera , Filogenia , Viagem , Vibrio cholerae , Fatores de Virulência , Humanos , Cólera/microbiologia , Cólera/epidemiologia , Vibrio cholerae/genética , Vibrio cholerae/classificação , Vibrio cholerae/isolamento & purificação , Austrália/epidemiologia , Fatores de Virulência/genética , Indonésia/epidemiologia , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma/métodos , Genoma Bacteriano , Virulência/genética , Variação Genética , Farmacorresistência Bacteriana/genética
4.
Antimicrob Resist Infect Control ; 13(1): 125, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39396971

RESUMO

BACKGROUND: Multidrug- or rifampicin-resistant tuberculosis (TB; MDR/RR-TB) is a significant public health threat. However, the mechanisms involved in its transmission in Sichuan, China are unclear. To provide a scientific basis for MDR/RR-TB control and prevention, we investigated the drug-resistance characteristics, genetic diversity, and transmission dynamics and analyzed the demographic and clinical characteristics of patients to identify risk factors for the acquisition of MDR/RR-TB in Sichuan, Western China. METHODS: Whole-genome sequencing was performed using a sample comprised of all MDR/RR-TB strains isolated from patients with pulmonary TB (≥ 15 years) at the 22 surveillance sites in Sichuan province between January 2019 and December 2021, to analyze genotypic drug resistance and genetic diversity. Moreover, we performed statistical analyses of the epidemiological characteristics and risk factors associated with the transmission dynamics of MDR/RR-TB. RESULTS: The final analysis included 278 MDR/RR TB strains. Lineage 2.2, the major sub-lineage, accounted for 82.01% (228/278) of isolates, followed by lineage 4.5 (9.72%, 27/278), lineage 4.4 (6.83%, 19/278), and lineage 4.2 (1.44%, 4/278). The drug resistance rates, ranging from high to low, were as follows: isoniazid (229 [82.37%]), streptomycin (177 [63.67%]), ethambutol (144 [51.80%]), pyrazinamide (PZA, 119 [42.81%]), fluoroquinolones (FQs, 93 [33.45%]). Further, the clofazimine, bedaquiline, and delamanid resistance rates were 2.88, 2.88, and 1.04%, respectively. The gene composition cluster rate was 32.37% (90/278). In addition, 83.81% (233/278) of MDR/RR-TB cases were determined to be likely caused by transmission. Finally, patients infected with lineage two strains and strains with the KatG S315T amino acid substitution presented a higher risk of MDR/RR-TB transmission. CONCLUSION: Transmission plays a significant role in the MDR/RR-TB burden in Sichuan province, and lineage 2 strains and strains harboring KatG S315T have a high probability of transmission. Further, high levels of FQ and PZA drug resistance suggest an urgent need for drug susceptibility testing prior to designing therapeutic regimens. New anti-TB drugs need to be used standardly and TB strains should be regularly monitored for resistance to these drugs.


Assuntos
Antituberculosos , Farmacorresistência Bacteriana Múltipla , Variação Genética , Mycobacterium tuberculosis , Rifampina , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Rifampina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Masculino , Feminino , Antituberculosos/farmacologia , Adulto , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Fatores de Risco , Idoso , Genótipo , Adulto Jovem , Tuberculose Pulmonar/transmissão , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/epidemiologia , Adolescente
5.
Lancet Reg Health Am ; 37: 100860, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39281423

RESUMO

Background: COVID-19 dynamics are driven by a complex interplay of factors including population behaviour, new variants, vaccination and immunity from prior infections. We quantify drivers of SARS-CoV-2 transmission in the Dominican Republic, an upper-middle income country of 10.8 million people. We then assess the impact of the vaccination campaign implemented in February 2021, primarily using CoronaVac, in saving lives and averting hospitalisations. Methods: We fit an age-structured, multi-variant transmission dynamic model to reported deaths, hospital bed occupancy, and seroprevalence data until December 2021, and simulate epidemic trajectories under different counterfactual scenarios. Findings: We estimate that vaccination averted 7210 hospital admissions (95% credible interval, CrI: 6830-7600), 2180 intensive care unit admissions (95% CrI: 2080-2280) and 766 deaths (95% CrI: 694-859) in the first 6 months of the campaign. If no vaccination had occurred, we estimate that an additional decrease of 10-20% in population mobility would have been required to maintain equivalent death and hospitalisation outcomes. We also found that early vaccination with CoronaVac was preferable to delayed vaccination using a product with higher efficacy. Interpretation: SARS-CoV-2 transmission dynamics in the Dominican Republic were driven by a substantial accumulation of immunity during the first two years of the pandemic but, despite this, vaccination was essential in enabling a return to pre-pandemic mobility levels without considerable additional morbidity and mortality. Funding: Medical Research Council, Wellcome Trust, Royal Society, US CDC and Australian National Health and Medical Research Council.

6.
Malar J ; 23(1): 274, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256741

RESUMO

BACKGROUND: Malaria remains an important public health problem, particularly in sub-Saharan Africa. In Rwanda, where malaria ranks among the leading causes of mortality and morbidity, disease transmission is influenced by climatic factors. However, there is a paucity of studies investigating the link between climate change and malaria dynamics, which hinders the development of effective national malaria response strategies. Addressing this critical gap, this study analyses how climatic factors influence malaria transmission across Rwanda, thereby informing tailored interventions and enhancing disease management frameworks. METHODS: The study analysed the potential impact of temperature and cumulative rainfall on malaria incidence in Rwanda from 2012 to 2021 using meteorological data from the Rwanda Meteorological Agency and malaria case records from the Rwanda Health Management and Information System. The analysis was performed in two stages. First, district-specific generalized linear models with a quasi-Poisson distribution were applied, which were enhanced by distributed lag non-linear models to explore non-linear and lagged effects. Second, random effects multivariate meta-analysis was employed to pool the estimates and to refine them through best linear unbiased predictions. RESULTS: A 1-month lag with specific temperature and rainfall thresholds influenced malaria incidence across Rwanda. Average temperature of 18.5 °C was associated with higher malaria risk, while temperature above 23.9 °C reduced the risk. Rainfall demonstrated a dual effect on malaria risk: conditions of low (below 73 mm per month) and high (above 223 mm per month) precipitation correlated with lower risk, while moderate rainfall (87 to 223 mm per month) correlated with higher risk. Seasonal patterns showed increased malaria risk during the major rainy season, while the short dry season presented lower risk. CONCLUSION: The study underscores the influence of temperature and rainfall on malaria transmission in Rwanda and calls for tailored interventions that are specific to location and season. The findings are crucial for informing policy that enhance preparedness and contribute to malaria elimination efforts. Future research should explore additional ecological and socioeconomic factors and their differential contribution to malaria transmission.


Assuntos
Mudança Climática , Malária , Chuva , Temperatura , Ruanda/epidemiologia , Malária/epidemiologia , Malária/transmissão , Incidência , Humanos , Estações do Ano , Clima
7.
PNAS Nexus ; 3(9): pgae338, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39246667

RESUMO

Isolation of symptomatic infectious persons can reduce influenza transmission. However, virus shedding that occurs without symptoms will be unaffected by such measures. Identifying effective isolation strategies for influenza requires understanding the interplay between individual virus shedding and symptom presentation. From 2017 to 2020, we conducted a case-ascertained household transmission study using influenza real-time RT-qPCR testing of nasal swabs and daily symptom diary reporting for up to 7 days after enrolment (≤14 days after index onset). We assumed real-time RT-qPCR cycle threshold (Ct) values were indicators of quantitative virus shedding and used symptom diaries to create a score that tracked influenza-like illness (ILI) symptoms (fever, cough, or sore throat). We fit phenomenological nonlinear mixed-effects models stratified by age and vaccination status and estimated two quantities influencing isolation effectiveness: shedding before symptom onset and shedding that might occur once isolation ends. We considered different isolation end points (including 24 h after fever resolution or 5 days after symptom onset) and assumptions about the infectiousness of Ct shedding trajectories. Of the 116 household contacts with ≥2 positive tests for longitudinal analyses, 105 (91%) experienced ≥1 ILI symptom. On average, children <5 years experienced greater peak shedding, longer durations of shedding, and elevated ILI symptom scores compared with other age groups. Most individuals (63/105) shed <10% of their total shed virus before symptom onset, and shedding after isolation varied substantially across individuals, isolation end points, and infectiousness assumptions. Our results can inform strategies to reduce transmission from symptomatic individuals infected with influenza.

8.
Bull Math Biol ; 86(11): 131, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311987

RESUMO

In this work, we obtained a general formulation for the mating probability and fertile egg production in helminth parasites, focusing on the reproductive behavior of polygamous parasites and its implications for transmission dynamics. By exploring various reproductive variables in parasites with density-dependent fecundity, such as helminth parasites, we departed from the traditional assumptions of Poisson and negative binomial distributions to adopt an arbitrary distribution model. Our analysis considered critical factors such as mating probability, fertile egg production, and the distribution of female and male parasites among hosts, whether they are distributed together or separately. We show that the distribution of parasites within hosts significantly influences transmission dynamics, with implications for parasite persistence and, therefore, with implications in parasite control. Using statistical models and empirical data from Monte Carlo simulations, we provide insights into the complex interplay of reproductive variables in helminth parasites, enhancing our understanding of parasite dynamics and the transmission of parasitic diseases.


Assuntos
Helmintos , Interações Hospedeiro-Parasita , Conceitos Matemáticos , Modelos Biológicos , Método de Monte Carlo , Animais , Feminino , Helmintos/fisiologia , Masculino , Interações Hospedeiro-Parasita/fisiologia , Fertilidade/fisiologia , Simulação por Computador , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Probabilidade , Óvulo/fisiologia , Humanos
9.
Heliyon ; 10(14): e34365, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108880

RESUMO

Background: The Severe Acute Respiratory Syndrome Coronavirus 2 virus (SARS-CoV-2) has been undergoing evolutionary changes to improve its ability to thrive within human hosts, leading to the emergence of specific variants associated with subsequent waves of the coronavirus diseases 2019 (COVID-19) pandemic. Indonesia has grappled with the effects of this pandemic and subsequent waves affecting various regions, including West Sumatra. Although located outside Java island epicenter, West Sumatra experienced significant COVID-19 transmission, especially during the third wave in early 2022. Objective: This study aimed to investigate the genetic evolution and epidemiological dynamics of SARS-CoV-2 variants in West Sumatra throughout the three pandemic waves. Methods: We conducted a genotyping study retrospectively using 278 COVID-19 patient samples from 2020 to 2022. The Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) was used for screening, and whole-genome sequence analysis was conducted through the Illumina MiSeq instrument. Result: The analysis revealed distinct patterns in the prevalence of viral lineages across the waves. The initial wave was predominated by clade 20A (77,4 %) especially lineage B.1.466.2 (50 %). The second wave was marked by a significant emergence of the Delta variant (72,5 %), particularly lineage AY.23 (81,1 %), originating from India, with subsequent local evolution leading to the formation of distinct clusters. We found that about 96,7 % of the third wave variant was dominated by Omicron variants, especially the generation of lineages BA.1 and BA.2, demonstrating widespread global dissemination and local variant development. Phylogenetic analysis indicated a close relatedness of West Sumatra variants to those from Malaysia and other parts of Indonesia, highlighting regional transmission dynamics and potential sources of variant introductions. Conclusion: This study has identified unique variant clusters within each wave, suggesting distinct evolutionary pathways and local adaptations. These findings provide valuable insights into the genomic landscape of SARS-CoV-2 in West Sumatra and emphasize the crucial role of ongoing genomic surveillance in tracking viral changes and guiding public health measures.

10.
J Infect Dis ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106422

RESUMO

Current passive case-finding policies have not resulted in the expected decline in tuberculosis incidence. Recognition of the variety of disease pathways experienced by individuals with tuberculosis highlights how many are not served by the current prevention and care system, and how much transmission is missed.

11.
Front Public Health ; 12: 1399731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39185123

RESUMO

Background: Extrapulmonary tuberculosis (EPTB) refers to a form of Tuberculosis (TB) where the infection occurs outside the lungs. Despite EPTB being a devastating disease of public health concern, it is frequently overlooked as a public health problem. This study aimed to investigate genetic diversity, identify drug-resistance mutations, and trace ongoing transmission chains. Methods: A cross-sectional study was undertaken on individuals with EPTB in western Ethiopia. In this study, whole-genome sequencing (WGS) was employed to analyze Mycobacterium tuberculosis (MTB) samples obtained from EPTB patients. Out of the 96 genomes initially sequenced, 89 met the required quality standards for genetic diversity, and drug-resistant mutations analysis. The data were processed using robust bioinformatics tools. Results: Our analysis reveals that the majority (87.64%) of the isolates can be attributed to Lineage-4 (L4), with L4.6.3 and L4.2.2.2 emerging as the predominant sub-lineages, constituting 34.62% and 26.92%, respectively. The overall clustering rate and recent transmission index (RTI) were 30 and 17.24%, respectively. Notably, 7.87% of the isolates demonstrated resistance to at least one anti-TB drug, although multi-drug resistance (MDR) was observed in only 1.12% of the isolates. Conclusions: The genetic diversity of MTBC strains in western Ethiopia was found to have low inter-lineage diversity, with L4 predominating and exhibiting high intra-lineage diversity. The notably high clustering rate in the region implies a pressing need for enhanced TB infection control measures to effectively disrupt the transmission chain. It's noteworthy that 68.75% of resistance-conferring mutations went undetected by both GeneXpert MTB/RIF and the line probe assay (LPA) in western Ethiopia. The identification of resistance mutations undetected by both GeneXpert and LPA, along with the detection of mixed infections through WGS, emphasizes the value of adopting WGS as a high-resolution approach for TB diagnosis and molecular epidemiological surveillance.


Assuntos
Variação Genética , Mutação , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Humanos , Etiópia/epidemiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Estudos Transversais , Adulto , Masculino , Feminino , Tuberculose/microbiologia , Tuberculose/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Pessoa de Meia-Idade , Adolescente , Farmacorresistência Bacteriana/genética , Adulto Jovem , Antituberculosos/farmacologia , Tuberculose Extrapulmonar
12.
Lancet Reg Health Am ; 36: 100824, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38993539

RESUMO

Background: Household transmission studies seek to understand the transmission dynamics of a pathogen by estimating the risk of infection from household contacts and community exposures. We estimated within/extra-household SARS-CoV-2 infection risk and associated factors in a household cohort study in one of the most vulnerable neighbourhoods in Rio de Janeiro city. Methods: Individuals ≥1 years-old with suspected or confirmed COVID-19 in the past 30 days (index cases) and household members aged ≥1 year were enrolled and followed at 14 and 28 days (study period November/2020-December/2021). RT-PCR testing, COVID-19 symptoms, and SARS-CoV-2 serologies were ascertained in all visits. Chain binomial household transmission models were fitted using data from 2024 individuals (593 households). Findings: Extra-household infection risk was 74.2% (95% credible interval [CrI] 70.3-77.8), while within-household infection risk was 11.4% (95% CrI 5.7-17.2). Participants reporting having received two doses of a COVID-19 vaccine had lower extra-household (68.9%, 95% CrI 57.3-77.6) and within-household (4.1%, 95% CrI 0.4-16.6) infection risk. Within-household infection risk was higher among participants aged 10-19 years, from overcrowded households, and with low family income. Contrastingly, extra-household infection risk was higher among participants aged 20-29 years, unemployed, and public transportation users. Interpretation: Our study provides important insights into COVID-19 household/community transmission in a vulnerable population that resided in overcrowded households and who struggled to adhere to lockdown policies and social distancing measures. The high extra-household infection risk highlights the extreme social vulnerability of this population. Prioritising vaccination of the most socially vulnerable could protect these individuals and reduce widespread community transmission. Funding: Fundação Oswaldo Cruz, CNPq, FAPERJ, Royal Society, Instituto Serrapilheira, FAPESP.

13.
Tuberculosis (Edinb) ; 148: 102550, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084002

RESUMO

Tuberculosis (TB) is an emerging threat to the survival of elephants in Nepal. We investigated the lung tissue samples from nine elephants that died from 2019 to 2022 in Nepal using culture, conventional PCR, and loop-mediated isothermal amplification (LAMP) and then performed genotyping of five PCR-positive isolates to understand the possible transmission dynamics of Mycobacterium tuberculosis (Mtb). Results showed that two-thirds (6/9) of elephants were confirmed to be infected from Mtb by LAMP, 5/9 by PCR, and 4/9 by culture. Genotyping of Mtb isolates showed that elephants were infected with the Indo-Oceanic and Beijing lineages including an isoniazid-resistant Beijing lineage. MIRU-VNTR-based phylogeny, gyrA, and katG sequencing showed the possibility of ongoing transmission of Indo-Oceanic lineages and likely transmission of the drug-resistant Beijing lineage from human to elephant. Implementation of comprehensive surveillance and preventive measures are urgently needed to address this zoonotic disease and protect elephants from TB in Nepal.


Assuntos
Elefantes , Mycobacterium tuberculosis , Animais , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Nepal/epidemiologia , Elefantes/microbiologia , Antituberculosos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/mortalidade , Genótipo , Filogenia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/transmissão , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/mortalidade , Tuberculose/microbiologia , Tuberculose/transmissão , Tuberculose/epidemiologia , Tuberculose/mortalidade , Tuberculose/veterinária , Humanos , Pulmão/microbiologia , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Diagnóstico Molecular
14.
J Infect Dis ; 230(4): e881-e894, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976562

RESUMO

BACKGROUND: Men and women with a migration background comprise an increasing proportion of incident human immunodeficiency virus (HIV) cases across Western Europe. METHODS: To characterize sources of transmission in local transmission chains, we used partial HIV consensus sequences with linked demographic and clinical data from the opt-out AIDS Therapy Evaluation in the Netherlands (ATHENA) cohort of people with HIV in the Netherlands and identified phylogenetically and epidemiologically possible HIV transmission pairs in Amsterdam. We interpreted these in the context of estimated infection dates, and quantified population-level sources of transmission to foreign-born and Dutch-born Amsterdam men who have sex with men (MSM) within Amsterdam transmission chains. RESULTS: We estimate that Dutch-born MSM were the predominant sources of infections among all Amsterdam MSM who acquired their infection locally in 2010-2021, and among almost all foreign-born Amsterdam MSM subpopulations. Stratifying by 2-year intervals indicated time trends in transmission dynamics, with a majority of infections originating from foreign-born MSM since 2016, although uncertainty ranges remained wide. CONCLUSIONS: Native-born MSM have predominantly driven HIV transmissions in Amsterdam in 2010-2021. However, in the context of rapidly declining incidence in Amsterdam, the contribution from foreign-born MSM living in Amsterdam is increasing, with some evidence that most local transmissions have been from foreign-born Amsterdam MSM since 2016.


Assuntos
Infecções por HIV , Homossexualidade Masculina , Filogenia , Humanos , Masculino , Países Baixos/epidemiologia , Infecções por HIV/transmissão , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Incidência , HIV-1/genética , HIV-1/classificação , Emigrantes e Imigrantes/estatística & dados numéricos , Estudos de Coortes , Pessoa de Meia-Idade , Minorias Sexuais e de Gênero
15.
Proc Biol Sci ; 291(2027): 20241296, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043233

RESUMO

The spread of viral respiratory infections is intricately linked to human interactions, and this relationship can be characterized and modelled using social contact data. However, many analyses tend to overlook the recurrent nature of these contacts. To bridge this gap, we undertake the task of describing individuals' contact patterns over time by characterizing the interactions made with distinct individuals during a week. Moreover, we gauge the implications of this temporal reconstruction on disease transmission by juxtaposing it with the assumption of random mixing over time. This involves the development of an age-structured individual-based model, using social contact data from a pre-pandemic scenario (the POLYMOD study) and a pandemic setting (the Belgian CoMix study), respectively. We found that accounting for the frequency of contacts impacts the number of new, distinct, contacts, revealing a lower total count than a naive approach, where contact repetition is neglected. As a consequence, failing to account for the repetition of contacts can result in an underestimation of the transmission probability given a contact, potentially leading to inaccurate conclusions when using mathematical models for disease control. We, therefore, underscore the necessity of acknowledging contact repetition when formulating effective public health strategies.


Assuntos
Pandemias , Infecções Respiratórias , Humanos , Infecções Respiratórias/transmissão , Infecções Respiratórias/epidemiologia , COVID-19/transmissão , COVID-19/epidemiologia , Bélgica/epidemiologia , Adulto , Busca de Comunicante , Modelos Teóricos , Adolescente , Criança , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Masculino , Pré-Escolar , Feminino
16.
BMC Vet Res ; 20(1): 328, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033103

RESUMO

BACKGROUND: Canine circovirus (CanineCV), a non-enveloped virus with a circular DNA genome, has been identified in various avian and mammalian species, including domestic and wild canids. This study aimed to comprehensively analyze the prevalence of CanineCV across diverse animal species in 11 provinces of China. RESULTS: A total of 1,666 serum samples were collected, revealing a 5.82% prevalence of CanineCV in dogs, with the highest rates being observed in southern and eastern China. Phylogenetic analysis of 266 global CanineCV genomes sourced from the NCBI identified six distinct genotypes, elucidating the complex dynamics of their evolution. Evidence suggested a potential bat origin for CanineCV, with positive selection and high rates of evolution being observed. Recombination analysis revealed dynamic genetic exchange, highlighting the intricate nature of CanineCV evolution. Mutational analysis identified key amino acid substitutions likely to influence the virus's adaptation. Additionally, glycosylation, palmitoylation, and SUMOylation sites were predicted, shedding light on crucial functional properties of the virus. CONCLUSIONS: This study provides a global perspective on the origin, genetic diversity, and evolutionary dynamics of CanineCV. Understanding these factors is crucial for elucidating its epidemiology and potential health risks.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças do Cão , Filogenia , Animais , Circovirus/genética , Circovirus/classificação , Cães , Doenças do Cão/virologia , Doenças do Cão/epidemiologia , China/epidemiologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Evolução Molecular , Genoma Viral , Variação Genética , Prevalência , Genótipo
17.
Pathogens ; 13(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057831

RESUMO

The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.

18.
Emerg Infect Dis ; 30(8): 1677-1682, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043451

RESUMO

We evaluated the spatiotemporal clustering of rapid diagnostic test-positive cholera cases in Uvira, eastern Democratic Republic of the Congo. We detected spatiotemporal clusters that consistently overlapped with major rivers, and we outlined the extent of zones of increased risk that are compatible with the radii currently used for targeted interventions.


Assuntos
Cólera , Análise Espaço-Temporal , Cólera/epidemiologia , República Democrática do Congo/epidemiologia , Humanos , História do Século XXI , Análise por Conglomerados
19.
Proc Natl Acad Sci U S A ; 121(30): e2400425121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39012818

RESUMO

In the centuries following Christopher Columbus's 1492 voyage to the Americas, transoceanic travel opened unprecedented pathways in global pathogen circulation. Yet no biological transfer is a single, discrete event. We use mathematical modeling to quantify historical risk of shipborne pathogen introduction, exploring the respective contributions of journey time, ship size, population susceptibility, transmission intensity, density dependence, and pathogen biology. We contextualize our results using port arrivals data from San Francisco, 1850 to 1852, and from a selection of historically significant voyages, 1492 to 1918. We offer numerical estimates of introduction risk across historically realistic ranges of journey time and ship population size, and show that both steam travel and shipping regimes that involved frequent, large-scale movement of people substantially increased risk of transoceanic pathogen circulation.


Assuntos
Navios , Viagem , Humanos , Vapor , Modelos Teóricos , São Francisco/epidemiologia , História do Século XX , História do Século XIX
20.
EMBO Rep ; 25(8): 3187-3201, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048750

RESUMO

Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.


Assuntos
Viroses , Animais , Humanos , Viroses/transmissão , Viroses/prevenção & controle , Viroses/virologia , Vírus , Vetores Artrópodes/virologia , Interações Hospedeiro-Patógeno , Vesículas Extracelulares/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA