Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Intensive Care Med Exp ; 12(1): 89, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365383

RESUMO

BACKGROUND: We previously showed in animals that transpulmonary driving pressure (PL) can be estimated during Neurally Adjusted Ventilatory Assist (NAVA) and Neural Pressure Support (NPS) using a single lower assist maneuver (LAM). The aim of this study was to test the LAM-based estimate of PL (PL_LAM) in patients with acute respiratory failure. METHODS: This was a prospective, physiological, and interventional study in intubated patients with acute respiratory failure. During both NAVA and simulated NPS (high and low levels of assist), a LAM was performed every 3 min by manually reducing the assist to zero for one single breath (by default, ventilator still provides 2 cmH2O). Following NAVA and NPSSIM periods, patients were sedated and passively ventilated in volume control and pressure control ventilation, to obtain PL during controlled mechanical ventilation (PL_CMV). PL using an esophageal balloon (PL_Pes) was also compared to PL_LAM and PL_CMV. We measured diaphragm electrical activity (Edi), ventilator pressure (PVent), esophageal pressure (Pes) and tidal volume. PL_LAM and PL_Pes were compared to themselves, and to PL_CMV for matching flows and volumes. RESULTS: Ten patients were included in the study. For the group, PL_LAM was closely similar to PL_CMV, with a high correlation (R2 = 0.88). Bland-Altman analysis revealed a low Bias of 0.28 cmH2O, and 1.96SD of 5.26 cmH2O. PL_LAM vs PL_Pes were also tightly related (R2 = 0.77). CONCLUSION: This physiological study in patients confirms our previous pre-clinical data that PL_LAM is as good an estimate as PL_Pes to determine PL, in spontaneously breathing patients on assisted mechanical ventilation. Trial registration The study was registered at clinicaltrials.gov (ID NCT05378802) on November 6, 2021.

2.
Respir Res ; 25(1): 332, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251985

RESUMO

BACKGROUND: Understanding the characteristics of pulmonary resistance and elastance in relation to the location of airway narrowing, e.g., tracheal stenosis vs. intrapulmonary airway obstruction, will help us understand lung function characteristics and mechanisms related to different airway diseases. METHODS: In this study, we used ex vivo sheep lungs as a model to measure lung resistance and elastance across a range of transpulmonary pressures (5-30 cmH2O) and ventilation frequencies (0.125-2 Hz). We established two tracheal stenosis models by inserting plastic tubes into the tracheas, representing mild (71.8% lumen area reduction) and severe (92.1%) obstructions. For intrapulmonary airway obstruction, we induced airway narrowing by challenging the lung with acetylcholine (ACh). RESULTS: We found a pattern change in the lung resistance and apparent lung elastance as functions of ventilation frequency that depended on the transpulmonary pressure (or lung volume). At a transpulmonary pressure of 10 cmH2O, lung resistance increased with ventilation frequency in severe tracheal stenosis, whereas in ACh-induced airway narrowing the opposite occurred. Furthermore, apparent lung elastance at 10 cmH2O decreased with increasing ventilation frequency in severe tracheal stenosis whereas in ACh-induced airway narrowing the opposite occurred. Flow-volume analysis revealed that the flow amplitude was much sensitive to ventilation frequency in tracheal stenosis than it was in ACh induced airway constriction. CONCLUSIONS: Results from this study suggest that lung resistance and apparent elastance measured at 10 cmH2O over the frequency range of 0.125-2 Hz can differentiate tracheal stenosis vs. intrapulmonary airway narrowing in ex vivo sheep lungs.


Assuntos
Resistência das Vias Respiratórias , Pulmão , Estenose Traqueal , Animais , Resistência das Vias Respiratórias/fisiologia , Ovinos , Pulmão/fisiopatologia , Estenose Traqueal/fisiopatologia , Elasticidade , Modelos Animais de Doenças , Técnicas In Vitro
3.
Intensive Care Med Exp ; 12(1): 84, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331249

RESUMO

BACKGROUND: Right ventricle impairment (RVI) is common during acute respiratory distress syndrome (ARDS) in adults and children, possibly mediated by the level of transpulmonary pressure (PL). We sought to investigate the impact of the level of PL on ARDS-associated right ventricle impairment (RVI). METHODS: Adults and children (> 72 h of life) were included in this two centers prospective study if they were ventilated for a new-onset ARDS or pediatric ARDS, without spontaneous breathing and contra-indication to esophageal catheter. Serial measures of static lung, chest wall, and respiratory mechanics were coupled to critical care echocardiography (CCE) for 3 days. Mixed-effect logistic regression models tested the impact of lung stress (ΔPL) along with age, lung injury severity, and carbon dioxide partial pressure, on RVI using two definitions: acute cor pulmonale (ACP), and RV dysfunction (RVD). ACP was defined as a dilated RV with septal dyskinesia; RVD was defined as a composite criterion using tricuspid annular plane systolic excursion, S wave velocity, and fractional area change. RESULTS: 46 patients were included (16 children, 30 adults) with 106 CCE (median of 2 CCE/patient). At day one, 19% of adults and 4/7 children > 1 year exhibited ACP, while 59% of adults and 44% of children exhibited RVD. In the entire population, ACP was present on 17/75 (23%) CCE. ACP was associated with an increased lung stress (mean ΔPL of 16.2 ± 6.6 cmH2O in ACP vs 11.3 ± 3.6 cmH2O, adjusted OR of 1.33, CI95% [1.11-1.59], p = 0.002) and being a child. RVD was present in 59/102 (58%) CCE and associated with lung stress. In children > 1 year, PEEP was significantly lower in case of ACP (9.3 [8.6; 10.0] cmH2O in ACP vs 15.0 [11.9; 16.3] cmH2O, p = 0.03). CONCLUSION: Lung stress was associated with RVI in adults and children with ARDS, children being particularly susceptible to RVI. Trial registration Clinical trials identifier: NCT0418467.

4.
Ann Intensive Care ; 14(1): 122, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133379

RESUMO

Heart-lungs interactions are related to the interplay between the cardiovascular and the respiratory system. They result from the respiratory-induced changes in intrathoracic pressure, which are transmitted to the cardiac cavities and to the changes in alveolar pressure, which may impact the lung microvessels. In spontaneously breathing patients, consequences of heart-lungs interactions are during inspiration an increase in right ventricular preload and afterload, a decrease in left ventricular preload and an increase in left ventricular afterload. In mechanically ventilated patients, consequences of heart-lungs interactions are during mechanical insufflation a decrease in right ventricular preload, an increase in right ventricular afterload, an increase in left ventricular preload and a decrease in left ventricular afterload. Physiologically and during normal breathing, heart-lungs interactions do not lead to significant hemodynamic consequences. Nevertheless, in some clinical settings such as acute exacerbation of chronic obstructive pulmonary disease, acute left heart failure or acute respiratory distress syndrome, heart-lungs interactions may lead to significant hemodynamic consequences. These are linked to complex pathophysiological mechanisms, including a marked inspiratory negativity of intrathoracic pressure, a marked inspiratory increase in transpulmonary pressure and an increase in intra-abdominal pressure. The most recent application of heart-lungs interactions is the prediction of fluid responsiveness in mechanically ventilated patients. The first test to be developed using heart-lungs interactions was the respiratory variation of pulse pressure. Subsequently, many other dynamic fluid responsiveness tests using heart-lungs interactions have been developed, such as the respiratory variations of pulse contour-based stroke volume or the respiratory variations of the inferior or superior vena cava diameters. All these tests share the same limitations, the most frequent being low tidal volume ventilation, persistent spontaneous breathing activity and cardiac arrhythmia. Nevertheless, when their main limitations are properly addressed, all these tests can help intensivists in the decision-making process regarding fluid administration and fluid removal in critically ill patients.

5.
Medicina (Kaunas) ; 60(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38929460

RESUMO

Background and Objectives: Intra-abdominal hypertension (IAH) and acute respiratory distress syndrome (ARDS) are common concerns in intensive care unit patients with acute respiratory failure (ARF). Although both conditions lead to impairment of global respiratory parameters, their underlying mechanisms differ substantially. Therefore, a separate assessment of the different respiratory compartments should reveal differences in respiratory mechanics. Materials and Methods: We prospectively investigated alterations in lung and chest wall mechanics in 18 mechanically ventilated pigs exposed to varying levels of intra-abdominal pressures (IAP) and ARDS. The animals were divided into three groups: group A (IAP 10 mmHg, no ARDS), B (IAP 20 mmHg, no ARDS), and C (IAP 10 mmHg, with ARDS). Following induction of IAP (by inflating an intra-abdominal balloon) and ARDS (by saline lung lavage and injurious ventilation), respiratory mechanics were monitored for six hours. Statistical analysis was performed using one-way ANOVA to compare the alterations within each group. Results: After six hours of ventilation, end-expiratory lung volume (EELV) decreased across all groups, while airway and thoracic pressures increased. Significant differences were noted between group (B) and (C) regarding alterations in transpulmonary pressure (TPP) (2.7 ± 0.6 vs. 11.3 ± 2.1 cmH2O, p < 0.001), elastance of the lung (EL) (8.9 ± 1.9 vs. 29.9 ± 5.9 cmH2O/mL, p = 0.003), and elastance of the chest wall (ECW) (32.8 ± 3.2 vs. 4.4 ± 1.8 cmH2O/mL, p < 0.001). However, global respiratory parameters such as EELV/kg bodyweight (-6.1 ± 1.3 vs. -11.0 ± 2.5 mL/kg), driving pressure (12.5 ± 0.9 vs. 13.2 ± 2.3 cmH2O), and compliance of the respiratory system (-21.7 ± 2.8 vs. -19.5 ± 3.4 mL/cmH2O) did not show significant differences among the groups. Conclusions: Separate measurements of lung and chest wall mechanics in pigs with IAH or ARDS reveals significant differences in TPP, EL, and ECW, whereas global respiratory parameters do not differ significantly. Therefore, assessing the compartments of the respiratory system separately could aid in identifying the underlying cause of ARF.


Assuntos
Modelos Animais de Doenças , Hipertensão Intra-Abdominal , Síndrome do Desconforto Respiratório , Mecânica Respiratória , Animais , Síndrome do Desconforto Respiratório/fisiopatologia , Hipertensão Intra-Abdominal/fisiopatologia , Hipertensão Intra-Abdominal/complicações , Suínos , Mecânica Respiratória/fisiologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Estudos Prospectivos
6.
Sci Rep ; 14(1): 13158, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849437

RESUMO

Patients with acute exacerbation of lung fibrosis with usual interstitial pneumonia (EUIP) pattern are at increased risk for ventilator-induced lung injury (VILI) and mortality when exposed to mechanical ventilation (MV). Yet, lack of a mechanical model describing UIP-lung deformation during MV represents a research gap. Aim of this study was to develop a constitutive mathematical model for UIP-lung deformation during lung protective MV based on the stress-strain behavior and the specific elastance of patients with EUIP as compared to that of acute respiratory distress syndrome (ARDS) and healthy lung. Partitioned lung and chest wall mechanics were assessed for patients with EUIP and primary ARDS (1:1 matched based on body mass index and PaO2/FiO2 ratio) during a PEEP trial performed within 24 h from intubation. Patient's stress-strain curve and the lung specific elastance were computed and compared with those of healthy lungs, derived from literature. Respiratory mechanics were used to fit a novel mathematical model of the lung describing mechanical-inflation-induced lung parenchyma deformation, differentiating the contributions of elastin and collagen, the main components of lung extracellular matrix. Five patients with EUIP and 5 matched with primary ARDS were included and analyzed. Global strain was not different at low PEEP between the groups. Overall specific elastance was significantly higher in EUIP as compared to ARDS (28.9 [22.8-33.2] cmH2O versus 11.4 [10.3-14.6] cmH2O, respectively). Compared to ARDS and healthy lung, the stress/strain curve of EUIP showed a steeper increase, crossing the VILI threshold stress risk for strain values greater than 0.55. The contribution of elastin was prevalent at lower strains, while the contribution of collagen was prevalent at large strains. The stress/strain curve for collagen showed an upward shift passing from ARDS and healthy lungs to EUIP lungs. During MV, patients with EUIP showed different respiratory mechanics, stress-strain curve and specific elastance as compared to ARDS patients and healthy subjects and may experience VILI even when protective MV is applied. According to our mathematical model of lung deformation during mechanical inflation, the elastic response of UIP-lung is peculiar and different from ARDS. Our data suggest that patients with EUIP experience VILI with ventilatory setting that are lung-protective for patients with ARDS.


Assuntos
Pulmão , Respiração Artificial , Síndrome do Desconforto Respiratório , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/fisiopatologia , Idoso , Pulmão/fisiopatologia , Pulmão/patologia , Elasticidade , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/metabolismo , Mecânica Respiratória/fisiologia , Estresse Mecânico , Doenças Pulmonares Intersticiais/fisiopatologia , Modelos Teóricos
7.
J Clin Med ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731069

RESUMO

Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.

8.
Crit Care ; 28(1): 177, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796447

RESUMO

The use of transpulmonary pressure monitoring based on measurement of esophageal pressure has contributed importantly to the personalization of mechanical ventilation based on respiratory pathophysiology in critically ill patients. However, esophageal pressure monitoring is still underused in the clinical practice. This technique allows partitioning of the respiratory mechanics between the lungs and the chest wall, provides information on lung recruitment and risk of barotrauma, and helps titrating mechanical ventilation settings in patients with respiratory failure. In assisted ventilation modes and during non-invasive respiratory support, esophageal pressure monitoring provides important information on the inspiratory effort and work of breathing. Nonetheless, several controversies persist on technical aspects, interpretation and clinical decision-making based on values derived from this monitoring technique. The aim of this review is to summarize the physiological bases of esophageal pressure monitoring, discussing the pros and cons of its clinical applications and different interpretations in critically ill patients undergoing invasive and non-invasive respiratory support.


Assuntos
Estado Terminal , Humanos , Estado Terminal/terapia , Monitorização Fisiológica/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia
9.
J Clin Monit Comput ; 38(4): 847-858, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38512359

RESUMO

Transpulmonary pressure (PL) calculation requires esophageal pressure (PES) as a surrogate of pleural pressure (Ppl), but its calibration is a cumbersome technique. Central venous pressure (CVP) swings may reflect tidal variations in Ppl and could be used instead of PES, but the interpretation of CVP waveforms could be difficult due to superposition of heartbeat-induced pressure changes. Thus, we developed a digital filter able to remove the cardiac noise to obtain a filtered CVP (f-CVP). The aim of the study was to evaluate the accuracy of CVP and filtered CVP swings (ΔCVP and Δf-CVP, respectively) in estimating esophageal respiratory swings (ΔPES) and compare PL calculated with CVP, f-CVP and PES; then we tested the diagnostic accuracy of the f-CVP method to identify unsafe high PL levels, defined as PL>10 cmH2O. Twenty patients with acute respiratory failure (defined as PaO2/FiO2 ratio below 200 mmHg) treated with invasive mechanical ventilation and monitored with an esophageal balloon and central venous catheter were enrolled prospectively. For each patient a recording session at baseline was performed, repeated if a modification in ventilatory settings occurred. PES, CVP and airway pressure during an end-inspiratory and -expiratory pause were simultaneously recorded; CVP, f-CVP and PES waveforms were analyzed off-line and used to calculate transpulmonary pressure (PLCVP, PLf-CVP, PLPES, respectively). Δf-CVP correlated better than ΔCVP with ΔPES (r = 0.8, p = 0.001 vs. r = 0.08, p = 0.73), with a lower bias in Bland Altman analysis in favor of PLf-CVP (mean bias - 0.16, Limits of Agreement (LoA) -1.31, 0.98 cmH2O vs. mean bias - 0.79, LoA - 3.14, 1.55 cmH2O). Both PLf-CVP and PLCVP correlated well with PLPES (r = 0.98, p < 0.001 vs. r = 0.94, p < 0.001), again with a lower bias in Bland Altman analysis in favor of PLf-CVP (0.15, LoA - 0.95, 1.26 cmH2O vs. 0.80, LoA - 1.51, 3.12, cmH2O). PLf-CVP discriminated high PL value with an area under the receiver operating characteristic curve 0.99 (standard deviation, SD, 0.02) (AUC difference = 0.01 [-0.024; 0.05], p = 0.48). In mechanically ventilated patients with acute respiratory failure, the digital filtered CVP estimated ΔPES and PL obtained from digital filtered CVP represented a reliable value of standard PL measured with the esophageal method and could identify patients with non-protective ventilation settings.


Assuntos
Pressão Venosa Central , Esôfago , Respiração Artificial , Humanos , Respiração Artificial/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Pressão , Insuficiência Respiratória/terapia , Insuficiência Respiratória/fisiopatologia , Reprodutibilidade dos Testes , Idoso de 80 Anos ou mais , Pleura/fisiopatologia , Algoritmos , Volume de Ventilação Pulmonar
10.
J Thorac Dis ; 16(2): 979-988, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38505046

RESUMO

Background: Esophageal pressure (Pes) has been used as a surrogate of pleural pressure (Ppl) to titrate positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. The relationship between Pes and PEEP remains undetermined. Methods: A gastric tube with a balloon catheter was inserted to monitor Pes in moderate to severe ARDS patients who underwent invasive mechanical ventilation. To assess the end-expiratory Pes response (ΔPes) to PEEP changes (ΔPEEP), the PEEP level was decreased and increased subsequently (with an average change of 3 cmH2O). The patients underwent the following two series of PEEP adjustment: (I) from PEEP-3 cmH2O to PEEPbaseline; and (II) from PEEPbaseline to PEEP+3 cmH2O. The patients were classified as "PEEP-dependent type" if they had ΔPes ≥30% ΔPEEP and were otherwise classified as "PEEP-independent type" (ΔPes <30% ΔPEEP in any series). Results: In total, 54 series of PEEP adjustments were performed in 18 ARDS patients. Of these patients, 12 were classified as PEEP-dependent type, and six were classified as PEEP-independent type. During the PEEP adjustment, end-expiratory Pes changed significantly in the PEEP-dependent patients, who had a Pes of 10.8 (7.9, 12.3), 12.5 (10.5, 14.9), and 14.5 (13.1, 18.3) cmH2O at PEEP-3 cmH2O, PEEPbaseline, and PEEP+3 cmH2O, respectively (median and quartiles; P<0.0001), while end-expiratory transpulmonary pressure (PL) was maintained at an optimal range [-0.1 (-0.7, 0.4), 0.1 (-0.6, 0.5), and 0.3 (-0.3, 0.7) cmH2O, respectively]. In the PEEP-independent patients, the Pes remained unchanged, with a Pes of 15.4 (11.4, 17.8), 15.5 (11.6, 17.8), and 15.4 (11.7, 18.30) cmH2O at each of the three PEEP levels, respectively. Meanwhile, end-expiratory PL significantly improved [from -5.5 (-8.5, -3.4) at PEEP-3 cmH2O to -2.5 (-5.0, -1.6) at PEEPbaseline to -0.5 (-1.8, 0.3) at PEEP+3 cmH2O; P<0.01]. Conclusions: Two types of Pes phenotypes were identified according to the ΔPes to ΔPEEP. The underlying mechanisms and implications for clinical practice require further exploration.

11.
Intensive Care Med Exp ; 12(1): 4, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224398

RESUMO

BACKGROUND: We have previously reported a simple correction method for estimating pleural pressure (Ppl) using central venous pressure (CVP). However, it remains unclear whether this method is applicable to patients with varying levels of intravascular volumes and/or chest wall compliance. This study aimed to investigate the accuracy of our method under different conditions of intravascular volume and chest wall compliance. RESULTS: Ten anesthetized and paralyzed pigs (43.2 ± 1.8 kg) were mechanically ventilated and subjected to lung injury by saline lung lavage. Each pig was subjected to three different intravascular volumes and two different intraabdominal pressures. For each condition, the changes in the esophageal pressure (ΔPes) and the estimated ΔPpl using ΔCVP (cΔCVP-derived ΔPpl) were compared to the directly measured change in pleural pressure (Δd-Ppl), which was the gold standard estimate in this study. The cΔCVP-derived ΔPpl was calculated as κ × ΔCVP, where "κ" was the ratio of the change in airway pressure to the change in CVP during the occlusion test. The means and standard deviations of the Δd-Ppl, ΔPes, and cΔCVP-derived ΔPpl for all pigs under all conditions were 7.6 ± 4.5, 7.2 ± 3.6, and 8.0 ± 4.8 cmH2O, respectively. The repeated measures correlations showed that both the ΔPes and cΔCVP-derived ΔPpl showed a strong correlation with the Δd-Ppl (ΔPes: r = 0.95, p < 0.0001; cΔCVP-derived ΔPpl: r = 0.97, p < 0.0001, respectively). In the Bland-Altman analysis to test the performance of the cΔCVP-derived ΔPpl to predict the Δd-Ppl, the ΔPes and cΔCVP-derived ΔPpl showed almost the same bias and precision (ΔPes: 0.5 and 1.7 cmH2O; cΔCVP-derived ΔPpl: - 0.3 and 1.9 cmH2O, respectively). No significant difference was found in the bias and precision depending on the intravascular volume and intraabdominal pressure in both comparisons between the ΔPes and Δd-Ppl, and cΔCVP-derived ΔPpl and Δd-Ppl. CONCLUSIONS: The CVP method can estimate the ΔPpl with reasonable accuracy, similar to Pes measurement. The accuracy was not affected by the intravascular volume or chest wall compliance.

12.
Physiol Meas ; 45(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38086063

RESUMO

Objective. Understanding a patient's respiratory effort and mechanics is essential for the provision of individualized care during mechanical ventilation. However, measurement of transpulmonary pressure (the difference between airway and pleural pressures) is not easily performed in practice. While airway pressures are available on most mechanical ventilators, pleural pressures are measured indirectly by an esophageal balloon catheter. In many cases, esophageal pressure readings take other phenomena into account and are not a reliable measure of pleural pressure.Approach.A system identification approach was applied to provide accurate pleural measures from esophageal pressure readings. First, we used a closed pressurized chamber to stimulate an esophageal balloon and model its dynamics. Second, we created a simplified version of an artificial lung and tried the model with different ventilation configurations. For validation, data from 11 patients (five male and six female) were used to estimate respiratory effort profile and patient mechanics.Main results.After correcting the dynamic response of the balloon catheter, the estimates of resistance and compliance and the corresponding respiratory effort waveform were improved when compared with the adjusted quantities in the test bench. The performance of the estimated model was evaluated using the respiratory pause/occlusion maneuver, demonstrating improved agreement between the airway and esophageal pressure waveforms when using the normalized mean squared error metric. Using the corrected muscle pressure waveform, we detected start and peak times 130 ± 50 ms earlier and a peak amplitude 2.04 ± 1.46 cmH2O higher than the corresponding estimates from esophageal catheter readings.Significance.Compensating the acquired measurements with system identification techniques makes the readings more accurate, possibly better portraying the patient's situation for individualization of ventilation therapy.


Assuntos
Respiração Artificial , Mecânica Respiratória , Humanos , Masculino , Feminino , Pressão , Mecânica Respiratória/fisiologia , Respiração Artificial/métodos , Pulmão , Catéteres
13.
J Crit Care ; 80: 154505, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141458

RESUMO

BACKGROUND: Data concerning the depth of neuromuscular blockade (NMB) required for effective relaxation of the respiratory muscles in ARDS are scarce. We hypothesised that complete versus partial NMB can modify respiratory mechanics. METHOD: Prospective study to compare the respiratory mechanics of ARDS patients according to the NMB depth. Each patient was analysed at two times: deep NMB (facial train of four count (TOFC) = 0) and intermediate NMB (TOFC >0). The primary endpoint was the comparison of chest wall elastance (ELCW) according to the NMB level. RESULTS: 33 ARDS patients were analysed. There was no statistical difference between the ELCW at TOFC = 0 compared to TOFC >0: 7 cmH2O/l [5.7-9.5] versus 7 cmH2O/l [5.3-10.8] (p = 0.36). The depth of NMB did not modify the expiratory nor inspiratory oesophageal pressure (Pesexp = 8 cmH2O [5-9.5] at TOFC = 0 versus 7 cmH2O [5-10] at TOFC >0; (p = 0.16) and Pesinsp = 10 cmH2O [8.2-13] at TOFC = 0 versus 10 cmH2O [8-13] at TOFC >0; (p = 0.12)). CONCLUSION: In ARDS, the relaxation of the respiratory muscles seems to be independent of the NMB level.


Assuntos
Bloqueio Neuromuscular , Doenças Neuromusculares , Síndrome do Desconforto Respiratório , Parede Torácica , Humanos , Estudos Prospectivos , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia
14.
JA Clin Rep ; 9(1): 72, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891434

RESUMO

INTRODUCTION: Chest tube drainage is usually performed through an underwater seal at a level of 10-20 cmH2O. Based on the definition of transpulmonary pressure, continuous chest drainage creates continuous negative pressure, decreasing pleural surface pressure and increasing transpulmonary pressure. We investigated how unilateral chest drainage could affect the tidal volume or driving pressure during mandatory mechanical ventilation. METHODS: This study was an experimental study using a lung-thoracic model and anesthesia ventilator. Tidal volume was set to 300 mL with pressure-controlled ventilation or volume-controlled ventilation. Left tidal volume and right tidal volume were measured independently using respirometers with positive end-expiratory pressure (PEEP) levels of 0, 10, and 20 cmH2O. Simultaneously, left negative pressure of the chest drainage was changed to 0, 10, and 20 cmH2O. RESULTS: In all conditions, a tidal volume of 300 mL was achieved. In both pressure-controlled ventilation and volume-controlled ventilation, the left tidal volume increased with the application of chest drainage at 10 cmH2O when the PEEP level was 0 cmH2O, but left tidal volume decreased with the application of chest drainage at 20 cmH2O. Furthermore, when PEEP was 10 cmH2O, the left tidal volume decreased in proportion to the pressure of thoracic drainage. The right tidal volumes changed inversely with their counterpart left tidal volumes. CONCLUSION: Unilateral chest drainage caused unbalanced ventilation of the left and right lungs regardless of pressure-controlled ventilation or volume-controlled ventilation.

15.
Crit Care ; 27(1): 398, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853480

RESUMO

BACKGROUND: Although patients with interstitial pneumonia pattern (ILD-UIP) and acute exacerbation (AE) leading to severe acute respiratory failure may require invasive mechanical ventilation (MV), physiological data on lung mechanics during MV are lacking. We aimed at describing the physiological effect of lung-protective ventilation in patients with AE-ILD-UIP compared with primary ARDS. METHODS: Partitioned lung and chest wall mechanics were assessed in a series of AE-ILD-UIP patients matched 1:1 with primary ARDS as controls (based on BMI and PaO2/FiO2 ratio). Three PEEP levels (zero = ZEEP, 4-8 cmH2O = PEEPLOW, and titrated to achieve positive end-expiratory transpulmonary pressure PL,EE = PEEPTITRATED) were used for measurements. RESULTS: Ten AE-ILD-UIP patients and 10 matched ARDS were included. In AE-ILD-UIP median PL,EE at ZEEP was - 4.3 [- 7.6- - 2.3] cmH2O and lung elastance (EL) 44 [40-51] cmH2O/L. At PEEPLOW, PL,EE remained negative and EL did not change (p = 0.995) versus ZEEP. At PEEPTITRATED, PL,EE increased to 0.8 [0.3-1.5] cmH2O and EL to 49 [43-59] (p = 0.004 and p < 0.001 compared to ZEEP and PEEPLOW, respectively). ΔPL decreased at PEEPLOW (p = 0.018) and increased at PEEPTITRATED (p = 0.003). In matched ARDS control PEEP titration to obtain a positive PL,EE did not result in significant changes in EL and ΔPL. CONCLUSIONS: In mechanically ventilated AE-ILD-UIP patients, differently than in patients with primary ARDS, PEEP titrated to obtain a positive PL,EE significantly worsened lung mechanics.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Síndrome do Desconforto Respiratório , Humanos , Respiração Artificial , Mecânica Respiratória/fisiologia , Pulmão , Síndrome do Desconforto Respiratório/terapia , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/terapia
16.
Front Med (Lausanne) ; 10: 1240321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700773

RESUMO

Pneumothorax is a potentially fatal complication in patients with acute respiratory distress syndrome (ARDS), presenting challenges in determining the optimal positive end-expiratory pressure (PEEP) level to prevent atelectasis without exacerbating the pneumothorax. This case report describes the successful application of transpulmonary pressure and electrical impedance tomography (EIT) at the bedside to guide PEEP selection in a patient with ARDS complicated by pneumothorax due to methicillin-resistant Staphylococcus aureus infection. By using minimal PEEP to maintain positive end-expiratory transpulmonary pressure and visualizing lung reopening with EIT, the optimal PEEP level was reaffirmed, even if traditionally considered high. The patient's condition improved, and successful weaning from the ventilator was achieved, leading to a transfer out of the intensive care unit. Clinical trial registration: https://clinicaltrials.gov/show/NCT04081142, identifier NCT04081142.

17.
Front Vet Sci ; 10: 1083290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538169

RESUMO

The primary goals of positive end-expiratory pressure (PEEP) are to restore functional residual capacity through recruitment and prevention of alveolar collapse. Through these mechanisms, PEEP improves arterial oxygenation and may reduce the risk of ventilator-induced lung injury (VILI). Because of the many potential negative effects associated with the use of PEEP, much research has concentrated on determining the optimal PEEP setting. Arterial oxygenation targets and pressure-volume loops have been utilized to set the optimal PEEP for decades. Several other techniques have been suggested, including the use of PEEP tables, compliance, driving pressure (DP), stress index (SI), transpulmonary pressures, imaging, and electrical impedance tomography. Each of these techniques has its own benefits and limitations and there is currently not one technique that is recommended above all others.

18.
Front Physiol ; 14: 1221829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538376

RESUMO

Esophageal pressure is the closest estimate of pleural pressure. Changes in esophageal pressure reflect changes in intrathoracic pressure and affect transpulmonary pressure, both of which have multiple effects on right and left ventricular performance. During passive breathing, increasing esophageal pressure is associated with lower venous return and higher right ventricular afterload and lower left ventricular afterload and oxygen consumption. In spontaneously breathing patients, negative pleural pressure swings increase venous return, while right heart afterload increases as in passive conditions; for the left ventricle, end-diastolic pressure is increased potentially favoring lung edema. Esophageal pressure monitoring represents a simple bedside method to estimate changes in pleural pressure and can advance our understanding of the cardiovascular performance of critically ill patients undergoing passive or assisted ventilation and guide physiologically personalized treatments.

19.
Front Physiol ; 14: 1204531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601645

RESUMO

Background. Global and regional transpulmonary pressure (PL) during one-lung ventilation (OLV) is poorly characterized. We hypothesized that global and regional PL and driving PL (ΔPL) increase during protective low tidal volume OLV compared to two-lung ventilation (TLV), and vary with body position. Methods. In sixteen anesthetized juvenile pigs, intra-pleural pressure sensors were placed in ventral, dorsal, and caudal zones of the left hemithorax by video-assisted thoracoscopy. A right thoracotomy was performed and lipopolysaccharide administered intravenously to mimic the inflammatory response due to thoracic surgery. Animals were ventilated in a volume-controlled mode with a tidal volume (VT) of 6 mL kg-1 during TLV and of 5 mL kg-1 during OLV and a positive end-expiratory pressure (PEEP) of 5 cmH2O. Global and local transpulmonary pressures were calculated. Lung instability was defined as end-expiratory PL<2.9 cmH2O according to previous investigations. Variables were acquired during TLV (TLVsupine), left lung ventilation in supine (OLVsupine), semilateral (OLVsemilateral), lateral (OLVlateral) and prone (OLVprone) positions randomized according to Latin-square sequence. Effects of position were tested using repeated measures ANOVA. Results. End-expiratory PL and ΔPL were higher during OLVsupine than TLVsupine. During OLV, regional end-inspiratory PL and ΔPL did not differ significantly among body positions. Yet, end-expiratory PL was lower in semilateral (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and lateral (ventral: 1.9 ± 3.3 cmH2O; caudal: 2.7 ± 1.7 cmH2O) compared to supine (ventral: 4.8 ± 2.9 cmH2O; caudal: 3.1 ± 2.6 cmH2O) and prone position (ventral: 1.7 ± 2.5 cmH2O; caudal: 3.3 ± 1.6 cmH2O), mainly in ventral (p ≤ 0.001) and caudal (p = 0.007) regions. Lung instability was detected more often in semilateral (26 out of 48 measurements; p = 0.012) and lateral (29 out of 48 measurements, p < 0.001) as compared to supine position (15 out of 48 measurements), and more often in lateral as compared to prone position (19 out of 48 measurements, p = 0.027). Conclusion. Compared to TLV, OLV increased lung stress. Body position did not affect stress of the ventilated lung during OLV, but lung stability was lowest in semilateral and lateral decubitus position.

20.
Intensive Care Med Exp ; 11(1): 42, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442844

RESUMO

INTRODUCTION: The driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing. AIM: To compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS. METHODS: Single-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation. RESULTS: Thirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients. CONCLUSIONS: In this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA