Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.422
Filtrar
1.
CNS Neurosci Ther ; 30(8): e14883, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097919

RESUMO

BACKGROUND: Parkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, which promotes a sustained inflammatory environment in the central nervous system. Regulatory T cells (Tregs) play an important role in the control of inflammation and might play a neuroprotective role. Indeed, a decrease in Treg number and function has been reported in PD. In this context, pramipexole, a dopaminergic receptor agonist used to treat PD symptoms, has been shown to increase peripheral levels of Treg cells and improve their suppressive function. The aim of this work was to determine the effect of pramipexole on immunoregulatory Treg cells and its possible neuroprotective effect on human dopaminergic neurons differentiated from human embryonic stem cells. METHODS: Treg cells were sorted from white blood cells of healthy human donors. Assays were performed with CD3/CD28-activated and non-activated Treg cells treated with pramipexole at concentrations of 2 or 200 ng/mL. These regulatory cells were co-cultured with in vitro-differentiated human dopaminergic neurons in a cytotoxicity assay with 6-hydroxydopamine (6-OHDA). The role of interleukin-10 (IL-10) was investigated by co-culturing activated IL-10-producing Treg cells with neurons. To further investigate the effect of treatment on Tregs, gene expression in pramipexole-treated, CD3/CD28-activated Treg cells was determined by Fluidigm analysis. RESULTS: Pramipexole-treated CD3/CD28-activated Treg cells showed significant protective effects on dopaminergic neurons when challenged with 6-OHDA. Pramipexole-treated activated Treg cells showed neuroprotective capacity through mechanisms involving IL-10 release and the activation of genes associated with regulation and neuroprotection. CONCLUSION: Anti-CD3/CD28-activated Treg cells protect dopaminergic neurons against 6-OHDA-induced damage. In addition, activated, IL-10-producing, pramipexole-treated Tregs also induced a neuroprotective effect, and the supernatants of these co-cultures promoted axonal growth. Pramipexole-treated, activated Tregs altered their gene expression in a concentration-dependent manner, and enhanced TGFß-related dopamine receptor regulation and immune-related pathways. These findings open new perspectives for the development of immunomodulatory therapies for the treatment of PD.


Assuntos
Benzotiazóis , Neurônios Dopaminérgicos , Oxidopamina , Pramipexol , Linfócitos T Reguladores , Humanos , Pramipexol/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Oxidopamina/toxicidade , Benzotiazóis/farmacologia , Técnicas de Cocultura , Interleucina-10/metabolismo , Células Cultivadas , Fármacos Neuroprotetores/farmacologia , Agonistas de Dopamina/farmacologia
2.
Front Immunol ; 15: 1444533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144146

RESUMO

Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.


Assuntos
COVID-19 , Epigênese Genética , Fatores de Transcrição Forkhead , Homeostase , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , COVID-19/imunologia , Metilação de DNA , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia
3.
Front Oncol ; 14: 1373820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104717

RESUMO

Objective: To explore the mechanism by which Tregs promote the progression of colorectal cancer by inducing tumor-associated macrophages to polarize into M2 type via ICOS. Methods: Postoperative pathological tissues and clinical pathological data of 268 colorectal cancer patients who underwent initial surgery were collected. Immunohistochemistry (IHC) was used to detect the expression levels of ICOS, CD163 (a marker for M2 macrophages), and Foxp3 (a marker for Tregs) in cancerous, adjacent non-tumorous, and normal tissues. The relationship of ICOS, M2 macrophages, and Tregs in CRC with clinical pathological characteristics and pre-surgical tumor markers (such as CEA and CA199) was explored. Results: The expression levels of M2 macrophages and Tregs increased with tumor progression, while ICOS expression showed a decreasing trend. Compared to adjacent and normal tissues, the expression levels of ICOS, M2 macrophages, and Tregs were higher in CRC tissues. The expression levels of M2 macrophages and Tregs were significantly positively correlated with tumor markers, while ICOS expression was significantly negatively correlated. Conclusion: Tumor-associated m2 macrophages induced by Tregs and ICOS participate in the dynamic balance of the colorectal cancer tumor microenvironment, and their interaction affects colorectal carcinogenesis and progression. High levels of ICOS are associated with better long-term survival rates.

4.
Mater Today Bio ; 27: 101151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104900

RESUMO

Host remodeling of decellularized extracellular matrix (dECM) material through the appropriate involvement of immune cells is essential for achieving functional organ/tissue regeneration. As many studies have focused on the role of macrophages, only few have evaluated the role of regulatory T cells (Tregs) in dECM remodeling. In this study, we used a mouse model of traumatic muscle injury to determine the role of Tregs in the constructive remodeling of vascular-derived dECM. According to the results, a certain number of Tregs could be recruited after dECM implantation. Notably, using anti-CD25 to reduce the number of Tregs recruited by the dECM was significantly detrimental to material remodeling based on a significant reduction in the number of M2 macrophages. In addition, collagen and elastic fibers, which maintain the integrity and mechanical properties of the material, rapidly degraded during the early stages of implantation. In contrast, the use of CD28-SA antibodies to increase the number of Tregs recruited by dECM promoted constructive remodeling, resulting in a decreased inflammatory response at the material edge, thinning of the surrounding fibrous connective tissue, uniform infiltration of host cells, and significantly improved tissue remodeling scores. The number of M2 macrophages increased whereas that of M1 macrophages decreased. Moreover, Treg-conditioned medium further enhanced material-induced M2 macrophage polarization in vitro. Overall, Treg is an important cell type that influences constructive remodeling of the dECM. Such findings contribute to the design of next-generation biomaterials to optimize the remodeling and regeneration of dECM materials.

5.
Adv Sci (Weinh) ; : e2310304, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072947

RESUMO

Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-ß1 (TGF-ß1)/TGFßR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFßR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFßR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.

6.
Int Immunopharmacol ; 138: 112554, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38968861

RESUMO

BACKGROUND: Human placental mesenchymal stromal cells (hPMSCs) are known to limit graft-versus-host disease (GVHD). CD8+CD122+PD-1+Tregs have been shown to improve the survival of GVHD mice. However, the regulatory roles of hPMSCs in this subgroup remain unclear. Here, the regulatory mechanism of hPMSCs in reducing liver fibrosis in GVHD mice by promoting CD8+CD122+PD-1+Tregs formation and controlling the balance of IL-6 and IL-10 were explored. METHODS: A GVHD mouse model was constructed using C57BL/6J and BALB/c mice and treated with hPMSCs. LX-2 cells were explored to study the effects of IL-6 and IL-10 on the activation of hepatic stellate cells (HSCs). The percentage of CD8+CD122+PD-1+Tregs and IL-10 secretion were determined using FCM. Changes in hepatic tissue were analysed by HE, Masson, multiple immunohistochemical staining and ELISA, and the effects of IL-6 and IL-10 on LX-2 cells were detected using western blotting. RESULTS: hPMSCs enhanced CD8+CD122+PD-1+Treg formation via the CD73/Foxo1 and promoted IL-10, p53, and MMP-8 levels, but inhibited IL-6, HLF, α-SMA, Col1α1, and Fn levels in the liver of GVHD mice through CD73. Positive and negative correlations of IL-6 and IL-10 between HLF were found in liver tissue, respectively. IL-6 upregulated HLF, α-SMA, and Col1α1 expression via JAK2/STAT3 pathway, whereas IL-10 upregulated p53 and inhibited α-SMA and Col1α1 expression in LX-2 cells by activating STAT3. CONCLUSIONS: hPMSCs promoted CD8+CD122+PD-1+Treg formation and IL-10 secretion but inhibited HSCs activation and α-SMA and Col1α1 expression by CD73, thus controlling the balance of IL-6 and IL-10, and alleviating liver injury in GVHD mice.


Assuntos
Proteína Forkhead Box O1 , Doença Enxerto-Hospedeiro , Células-Tronco Mesenquimais , Linfócitos T Reguladores , Animais , Feminino , Humanos , Camundongos , Gravidez , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Doença Enxerto-Hospedeiro/imunologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/imunologia , Interleucina-10/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/metabolismo , Fígado/patologia , Fígado/imunologia , Fígado/metabolismo , Cirrose Hepática/imunologia , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Placenta/citologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
7.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000453

RESUMO

Regulatory T cells (Tregs) possess unique immunosuppressive activity among CD4-positive T cells. Tregs are ubiquitously present in mammals and function to calm excessive immune responses, thereby suppressing allergies or autoimmune diseases. On the other hand, due to their immunosuppressive function, Tregs are thought to promote cancer progression. The tumor microenvironment (TME) is a multicellular system composed of many cell types, including tumor cells, infiltrating immune cells, and cancer-associated fibroblasts (CAFs). Within this environment, Tregs are recruited by chemokines and metabolic factors and impede effective anti-tumor responses. However, in some cases, their presence can also improve patient's survival rates. Their functional consequences may vary across tumor types, locations, and stages. An in-depth understanding of the precise roles and mechanisms of actions of Treg is crucial for developing effective treatments, emphasizing the need for further investigation and validation. This review aims to provide a comprehensive overview of the complex and multifaceted roles of Tregs within the TME, elucidating cellular communications, signaling pathways, and their impacts on tumor progression and highlighting their potential anti-tumor mechanisms through interactions with functional molecules.


Assuntos
Progressão da Doença , Neoplasias , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Transdução de Sinais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia
8.
Cell Biol Toxicol ; 40(1): 56, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042313

RESUMO

Programmed cell death ligand 2 (PD-L2), a ligand for the receptor programmed cell death 1 (PD-1), has an identity of 34% with its twin ligand PD-L1 and exhibits higher binding affinity with PD-1 than PD-L1. However, the role of PD-L2 in non-small cell lung cancer (NSCLC) progression, especially tobacco-induced cancer progression, has not been fully understood. Here, we found that PD-L2 promoted tumor growth in murine models with recruitment of regulatory T cells (Tregs). In patients with NSCLC, PD-L2 expression level in tumor samples was higher than in counterpart normal controls and was positively associated with patients' response to anti-PD-1 treatment. Mechanismly, PD-L2 bound its receptor Repulsive guidance molecule B (RGMB) on cancer cells and activated extracellular signal-regulated kinase (Erk) and nuclear factor κB (NFκB), leading to increased production of chemokine CCL20, which recruited Tregs and contributed to NSCLC progression. Consistently, knockdown of RGMB or NFκB p65 inhibited PD-L2-induced CCL20 production, and silencing of PD-L2 repressed Treg recruitment by NSCLC cells. Furthermore, cigarette smoke and carcinogen benzo(a)pyrene (BaP) upregulated PD-L2 in lung epithelial cells via aryl hydrocarbon receptor (AhR)-mediated transcription activation, whose deficiency markedly suppressed BaP-induced PD-L2 upregulation. These results suggest that PD-L2 mediates tobacco-induced recruitment of Tregs via the RGMB/NFκB/CCL20 cascade, and targeting this pathway might have therapeutic potentials in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiocina CCL20 , Neoplasias Pulmonares , NF-kappa B , Proteína 2 Ligante de Morte Celular Programada 1 , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Humanos , NF-kappa B/metabolismo , Animais , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Camundongos , Fumar Tabaco/efeitos adversos , Transdução de Sinais , Linhagem Celular Tumoral , Masculino , Feminino
9.
Cell Mol Life Sci ; 81(1): 327, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39085655

RESUMO

Dysregulation of mucosal immune system has been proposed to be critical in the pathogenesis of inflammatory bowel diseases (IBDs). Regulatory T cells (Tregs) play an important role in regulating immune responses. Tregs are involved in maintaining intestinal homeostasis and exerting suppressive function in colitis. Our previous studies showed that a novel forkhead box protein P3 (Foxp3) negative Tregs (Treg-of-B cells), induced by culturing naïve CD4+ T cells with B cells, could protect against colitis and downregulate T helper (Th) 1 and Th17 cell cytokines in T cell-mediated colitis. In the present study, we aimed to induce Treg-of-B cells in the CD8+ T-cell population and investigate their characteristics and immunomodulatory functions. Our results showed that CD8+ Treg-of-B cells expressed Treg-associated markers, including lymphocyte-activation gene-3 (LAG3), inducible co-stimulator (ICOS), programmed death-1 (PD-1), cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), tumor necrosis factor receptor superfamily member-4 (TNFRSF4, OX40), and tumor necrosis factor receptor superfamily member-18 (TNFRSF18, GITR), but did not express Foxp3. CD8+ Treg-of-B cells produced higher concentration of inhibitory cytokine interleukin (IL)-10, and expressed higher levels of cytotoxic factor granzyme B and perforin after stimulation, compared to those of CD8+CD25- T cells. Moreover, CD8+ Treg-of-B cells suppressed T cell proliferation in vitro and alleviated colonic inflammation in chronic dextran sulfate sodium (DSS)-induced colitis. In conclusion, our study identified a novel subpopulation of CD8+ Tregs with suppressive effects through cell contact. These CD8+ Treg-of-B cells might have therapeutic potential for IBDs.


Assuntos
Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Colite/imunologia , Colite/patologia , Colite/induzido quimicamente , Sulfato de Dextrana , Fatores de Transcrição Forkhead/metabolismo , Interleucina-10/metabolismo , Interleucina-10/imunologia
10.
Biomed Pharmacother ; 177: 116974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38968798

RESUMO

Over the past decade, immunotherapies have brought about significant changes in how we approach the treatment of various solid tumors and blood-related cancers. However, the effectiveness of checkpoint blockade therapy has been constrained to a rate of under 30 %. A significant challenge in the realm of tumor immunotherapy revolves around comprehending the mechanisms through which regulatory T (Treg) cells induce immunosuppression. We have recently discovered that USP22 (ubiquitin-specific peptidase 22) a deubiquitinating enzyme that is increased in various tumors, is an oncogene and controls Treg immune suppressive activity for tumor evasion, providing a rationale for USP22 targeting to achieve both onco- and immuno-therapeutic efficacies. Herein, we identified the traditional Chinese secoiridoid compound gentiopicroside as a USP22 inhibitor. Gentiopicroside treatment decreased the forkhead box P3 (Foxp3) expression, which subsequently reduced Treg immune suppressive activity. Treatment of cancer cells by gentiopicroside resulted in an increase in histone 2B monoubiquitination (H2Bub) in a USP22-dependent manner and a decrease in programmed cell death ligand 1 (PD-L1) expression, both of which are known as USP22-specific substrates. Docking and molecular dynamic simulation revealed that gentiopicroside stably binds to USP22 catalytic pocket, supporting that gentiopicroside is a USP22 inhibitor. Importantly, administration of gentiopicroside to mice significantly inhibited the growth of syngenetic lung adenocarcinoma. Further analysis of intratumoral immune cells revealed a dramatic increase CD8+ T cell production of IFN-γ and granzyme B (GZMB), confirming that gentiopicroside enhances antitumor immunity. Our study revealed that gentiopicroside is a USP22-specific inhibitor with potent antitumor therapeutic potentials.


Assuntos
Imunoterapia , Glucosídeos Iridoides , Linfócitos T Reguladores , Ubiquitina Tiolesterase , Glucosídeos Iridoides/farmacologia , Humanos , Animais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Imunoterapia/métodos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Fatores de Transcrição Forkhead
11.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39001455

RESUMO

T-cell-mediated anti-tumoral responses may have significant clinical relevance as a biomarker for response to immunotherapy. The value of peripheral blood pre-existing tumor antigen-specific T cells (PreI+) as a predictive immunotherapy biomarker in NSCLC patients was investigated, along with the frequency of various circulating immune cells. Fifty-two treatment-naïve, stage III/IV NSCLC patients, treated with front-line immune checkpoint inhibitors (ICI)-containing regimens were enrolled. PreI was calculated as the percentages of CD3+IFNγ+ cells after in vitro co-cultures of PBMCs with peptides against four different Tumor-Associated Antigens (TAA). Immunophenotyping of peripheral blood immune cells was performed using multicolor flow cytometry. PreI+ T cells were detected in 44% of patients. Median overall survival (OS) was significantly higher in PreI+ patients compared to PreI- patients (not reached vs. 321 days, respectively; p = 0.014). PreI+ patients had significantly higher numbers of possible exhausted CD3+CD8+PD-1+ cells and lower percentages of immunosuppressive Tregs compared to PreI- patients. Additionally, patients with PreI+ and low numbers of peripheral blood M-MDSCs had a significant survival advantage compared to the rest of the patients. Thus, combining pre-existing tumor antigen-specific immunity before initiation of ICI in NSCLC patients with selected immune-suppressive cells could identify patients who have a favorable clinical outcome when treated with ICI-containing regimens.

12.
Immunol Rev ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054615

RESUMO

Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.

13.
Cancer Sci ; 115(8): 2553-2564, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877825

RESUMO

Over 50% of patients with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) are diagnosed at an advanced stage, which is characterized by immune imbalance between CD8+ T cells and regulatory T (Treg) cells that accelerates disease progression. However, there is no imbalance indicator to predict clinical outcomes. Here, we show that the proportion of CD8+ T cells decreases and Treg cells increases in advanced HBV-HCC patients. During this stage, CD8+ T cells and Treg cells expressed the coinhibitory molecule PD-1 and the costimulatory molecule ICOS, respectively. Additionally, the ratio between PD-1+CD8 and ICOS+Tregs showed significant changes. Patients were further divided into high- and low-ratio groups: PD-1+CD8 and ICOS+Tregs high- (PD-1/ICOShi) and low-ratio (PD-1/ICOSlo) groups according to ratio median. Compared with PD-1/ICOSlo patients, the PD-1/ICOShi group had better clinical prognosis and weaker CD8+ T cells exhaustion, and the T cell-killing and proliferation functions were more conservative. Surprisingly, the small sample analysis found that PD-1/ICOShi patients exhibited a higher proportion of tissue-resident memory T (TRM) cells and had more stable killing capacity and lower apoptosis capacity than PD-1/ICOSlo advanced HBV-HCC patients treated with immune checkpoint inhibitors (ICIs). In conclusion, the ratio between PD-1+CD8 and ICOS+Tregs was associated with extreme immune imbalance and poor prognosis in advanced HBV-HCC. These findings provide significant clinical implications for the prognosis of advanced HBV-HCC and may serve as a theoretical basis for identifying new targets in immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Proteína Coestimuladora de Linfócitos T Induzíveis , Neoplasias Hepáticas , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Prognóstico , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/metabolismo , Feminino , Pessoa de Meia-Idade , Vírus da Hepatite B/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Adulto , Idoso , Hepatite B/imunologia
14.
Inflamm Res ; 73(8): 1311-1332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839628

RESUMO

BACKGROUND: Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS: A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS: In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS: A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.


Assuntos
Linfócitos T Reguladores , Vitiligo , Vitiligo/imunologia , Vitiligo/terapia , Humanos , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia
15.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892058

RESUMO

Metformin, a medication known for its anti-glycemic properties, also demonstrates potent immune system activation. In our study, using a 4T1 breast cancer model in BALB/C WT mice, we examined metformin's impact on the functional phenotype of multiple immune cells, with a specific emphasis on natural killer T (NKT) cells due to their understudied role in this context. Metformin administration delayed the appearance and growth of carcinoma. Furthermore, metformin increased the percentage of IFN-γ+ NKT cells, and enhanced CD107a expression, as measured by MFI, while decreasing PD-1+, FoxP3+, and IL-10+ NKT cells in spleens of metformin-treated mice. In primary tumors, metformin increased the percentage of NKp46+ NKT cells and increased FasL expression, while lowering the percentages of FoxP3+, PD-1+, and IL-10-producing NKT cells and KLRG1 expression. Activation markers increased, and immunosuppressive markers declined in T cells from both the spleen and tumors. Furthermore, metformin decreased IL-10+ and FoxP3+ Tregs, along with Gr-1+ myeloid-derived suppressor cells (MDSCs) in spleens, and in tumor tissue, it decreased IL-10+ and FoxP3+ Tregs, Gr-1+, NF-κB+, and iNOS+ MDSCs, and iNOS+ dendritic cells (DCs), while increasing the DCs quantity. Additionally, increased expression levels of MIP1a, STAT4, and NFAT in splenocytes were found. These comprehensive findings illustrate metformin's broad immunomodulatory impact across a variety of immune cells, including stimulating NKT cells and T cells, while inhibiting Tregs and MDSCs. This dynamic modulation may potentiate its use in cancer immunotherapy, highlighting its potential to modulate the tumor microenvironment across a spectrum of immune cell types.


Assuntos
Neoplasias da Mama , Metformina , Camundongos Endogâmicos BALB C , Metformina/farmacologia , Metformina/uso terapêutico , Animais , Feminino , Camundongos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Supressoras Mieloides/efeitos dos fármacos , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Agentes de Imunomodulação/farmacologia
16.
J Clin Med ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38892795

RESUMO

Background: B and T regulatory cells, also known as Bregs and Tregs, are involved in kidney transplantation. The purpose of this study is to monitor changes in the frequency and absolute numbers of Tregs (CD3+CD4+CD25+FoxP3+), transitional Bregs (tBregs) (CD24++CD38++), memory Bregs (mBregs) (CD24++CD27+), and plasmablasts before (T0) and six months (T6) after transplantation. Additionally, we aim to investigate any correlation between Tregs and tBregs, mBregs, or plasmablasts and their relationship with graft function. Methods: Flow cytometry was used to immunophenotype cells from 50 kidney recipients who did not experience rejection. Renal function was assessed using the estimated glomerular filtration rate (eGFR). Results: At T6, there was a significant decrease in the frequency of Tregs, plasmablasts, and tBregs, as well as in the absolute number of tBregs. The frequency of mBregs, however, remained unchanged. Graft function was found to have a positive correlation with the frequency of tBregs and plasmablasts. A significant correlation was observed between the frequency and absolute number of tBregs only when the eGFR was greater than 60 but not at lower values. At an eGFR greater than 60, there was a positive correlation between the absolute numbers of Tregs and mBregs but not between Tregs and tBregs. No correlation was observed for any cell population in dialysis patients. Conclusions: The data show a correlation between the frequency and absolute number of tBregs and the absolute number of Tregs and mBregs with good renal function in the early post-transplant period.

17.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891073

RESUMO

Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.


Assuntos
Fatores de Transcrição Forkhead , Fenótipo , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/metabolismo
18.
Int Immunopharmacol ; 137: 112289, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38889505

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase (RTK) primarily expressed in hematopoietic stem cells and dendritic cells (DCs). While FLT3 plays a critical role in the proliferation, development and maintenance of DCs, thus influencing immune responses under both normal and pathological conditions, there also exists some evidence that FLT3+DC may be involved with immune responses in liver transplantation (LT). In this study, results from single-cell sequencing data analysis revealed a clear relationship between FLT3+DCs and Regulatory T cells (Tregs) in liver tissue of LT recipients. In peripheral blood samples of LT patients, levels of FLT3+DCs were decreased post-LT-surgery, while Tregs were increased. In a LT mouse model, levels of FLT3+DCs in the liver and bone marrow exhibited an initial time-dependent decrease followed by an increase after LT surgery. Results as obtained with co-culture experiments using mature BMDCs and CD4+ T cells revealed fluctuations in Tregs in response to FLT3 inhibitors and the FLT3 ligand. These findings suggest that FLT3+DCs could emerge as a novel target for mitigating immune rejection in LT.


Assuntos
Células Dendríticas , Rejeição de Enxerto , Transplante de Fígado , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Tirosina Quinase 3 Semelhante a fms , Linfócitos T Reguladores/imunologia , Animais , Células Dendríticas/imunologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Humanos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Masculino , Camundongos , Fígado/imunologia , Feminino , Técnicas de Cocultura , Pessoa de Meia-Idade , Células Cultivadas , Camundongos Endogâmicos BALB C , Proteínas de Membrana
19.
Vet Immunol Immunopathol ; 274: 110790, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901326

RESUMO

CD25, the interleukin-2 receptor α-chain, is expressed on cell surfaces of different immune cells and is commonly used for phenotyping of regulatory T cells (Tregs). CD25 has essential roles in the maintenance of hemostasis and immune tolerance and Treg cell involvement has been shown in human diseases and murine models for allergy, autoimmunity, cancer, chronic inflammation, and many others. In horses, a cross-reactive anti-human CD25 antibody has previously been used for characterizing Tregs. Here, we developed monoclonal antibodies (mAbs) to equine CD25 and compared their staining pattern with the anti-human CD25 antibody by flow cytometry. The comparison of the two reagents was performed by two separate analyses in independent laboratories. Overall, similar staining patterns for equine peripheral blood lymphocytes were obtained with the anti-human CD25 antibody and equine CD25 mAb 15-1 in both laboratories. Both reagents identified comparable CD4+CD25+ and CD4+CD25+FOXP3+ percentages after stimulation of peripheral blood mononuclear cells (PBMC) with pokeweed mitogen. However, when compared to the anti-human CD25 antibody, the equine CD25 mAb 15-1 resulted in a better staining intensity of the equine CD25+ cells and increased the percentages of Tregs and other CD25+ cells ex vivo and after culturing of PBMC without stimulation. In summary, the equine CD25 mAbs provide new, improved reagents for Tregs and CD25+ cell phenotyping in horses.


Assuntos
Anticorpos Monoclonais , Citometria de Fluxo , Subunidade alfa de Receptor de Interleucina-2 , Linfócitos T Reguladores , Cavalos/imunologia , Animais , Linfócitos T Reguladores/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Anticorpos Monoclonais/imunologia , Citometria de Fluxo/veterinária , Humanos , Leucócitos Mononucleares/imunologia
20.
J Autoimmun ; 147: 103266, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38851088

RESUMO

Regulation of autoreactive cells is key for both prevention and amelioration of autoimmune disease. A better understanding of the key cell population(s) responsible for downregulation of autoreactive cells would provide necessary foundational insight for cellular-based therapies in autoimmune disease. Utilizing a mouse model of anti-myeloperoxidase (MPO) glomerulonephritis, we sought to understand which immune cells contribute to downregulation of the anti-MPO autoimmune response. MPO-/- mice were immunized with whole MPO to induce an anti-MPO response. Anti-MPO splenocytes were then transferred into recipient mice (Rag2-/- mice or WT mice). Anti-MPO titers were followed over time. After anti-MPO splenocyte transfer, WT mice are able to downregulate the anti-MPO response while anti-MPO titers persist in Rag2-/- recipients. Reconstitution with WT splenocytes into Rag2-/- recipients prior to anti-MPO splenocyte transfer enabled mice to downregulate the anti-MPO immune response. Therefore, wildtype splenocytes contain a cellular population that is capable of downregulating the autoimmune response. Through splenocyte transfer, antibody depletion experiments, and purified cell population transfers, we confirmed that the regulatory T cell (Treg) population is responsible for the downregulation of the anti-MPO autoimmune response. Further investigation revealed that functional Tregs from WT mice are capable of downregulating anti-MPO antibody production and ameliorate anti-MPO induced glomerulonephritis. These data underscore the importance of functional Tregs for control of autoimmune responses and prevention of end-organ damage due to autoimmunity.


Assuntos
Autoimunidade , Modelos Animais de Doenças , Glomerulonefrite , Camundongos Knockout , Peroxidase , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Glomerulonefrite/imunologia , Glomerulonefrite/terapia , Camundongos , Peroxidase/metabolismo , Peroxidase/imunologia , Autoanticorpos/imunologia , Baço/imunologia , Regulação para Baixo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transferência Adotiva , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA