Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Adv Sci (Weinh) ; 11(29): e2307804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837887

RESUMO

RNA splicing is crucial in the multilayer regulatory networks for gene expression, making functional interactions with DNA- and other RNA-processing machineries in the nucleus. However, these established couplings are all major spliceosome-related; whether the minor spliceosome is involved remains unclear. Here, through affinity purification using Drosophila lysates, an interaction is identified between the minor spliceosomal 65K/RNPC3 and ANKRD11, a cofactor of histone deacetylase 3 (HDAC3). Using a CRISPR/Cas9 system, Deletion strains are constructed and found that both Dm65KΔ/Δ and Dmankrd11Δ/Δ mutants have reduced histone deacetylation at Lys9 of histone H3 (H3K9) and Lys5 of histone H4 (H4K5) in their heads, exhibiting various neural-related defects. The 65K-ANKRD11 interaction is also conserved in human cells, and the HsANKRD11 middle-uncharacterized domain mediates Hs65K association with HDAC3. Cleavage under targets and tagmentation (CUT&Tag) assays revealed that HsANKRD11 is a bridging factor, which facilitates the synergistic common chromatin-binding of HDAC3 and Hs65K. Knockdown (KD) of HsANKRD11 simultaneously decreased their common binding, resulting in reduced deacetylation of nearby H3K9. Ultimately, this study demonstrates that expression changes of many genes caused by HsANKRD11-KD are due to the decreased common chromatin-binding of HDAC3 and Hs65K and subsequently reduced deacetylation of H3K9, illustrating a novel and conserved coupling mechanism that links the histone deacetylation with minor spliceosome for the regulation of gene expression.


Assuntos
Histona Desacetilases , Histonas , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Histonas/metabolismo , Histonas/genética , Humanos , Animais , Spliceossomos/metabolismo , Spliceossomos/genética , Acetilação , Drosophila/genética , Drosophila/metabolismo , Transcrição Gênica/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Repressoras
2.
Diagnostics (Basel) ; 13(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37046475

RESUMO

Anti-nuclear (ANA) are present in approximately 90% of systemic sclerosis (SSc) patients and are key biomarkers in supporting the diagnosis and determining the prognosis of this disease. In addition to the classification criteria autoantibodies for SSc [i.e., anti-centromere, anti-topoisomerase I (Scl-70), anti-RNA polymerase III], other autoantibodies have been associated with important SSc phenotypes. Among them, anti-U11/U12 ribonucleoprotein (RNP) antibodies, also known as anti-RNPC-3, were first reported in a patient with SSc, but very little is known about their association and clinical utility. The U11/U12 RNP macromolecular complex consists of several proteins involved in alternative mRNA splicing. More recent studies demonstrated associations of anti-anti-U11/U12 antibodies with SSc and severe pulmonary fibrosis as well as with moderate to severe gastrointestinal dysmotility. Lastly, anti-U11/U12 autoantibodies have been strongly associated with malignancy in SSc patients. Here, we aimed to summarize the knowledge of anti-U11/U12/RNPC-3 antibodies in SSc, including their seroclinical associations in a narrative literature review.

3.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557915

RESUMO

Minor spliceosome inhibition due to mutations in RNU4ATAC are linked to primary microcephaly. Ablation of Rnu11, which encodes a minor spliceosome snRNA, inhibits the minor spliceosome in the developing mouse pallium, causing microcephaly. There, cell cycle defects and p53-mediated apoptosis in response to DNA damage resulted in loss of radial glial cells (RGCs), underpinning microcephaly. Here, we ablated Trp53 to block cell death in Rnu11 cKO mice. We report that Trp53 ablation failed to prevent microcephaly in these double knockout (dKO) mice. We show that the transcriptome of the dKO pallium was more similar to the control compared with the Rnu11 cKO. We find aberrant minor intron splicing in minor intron-containing genes involved in cell cycle regulation, resulting in more severely impaired mitotic progression and cell cycle lengthening of RGCs in the dKO that was detected earlier than in the Rnu11 cKO. Furthermore, we discover a potential role of p53 in causing DNA damage in the developing pallium, as detection of γH2aX+ was delayed in the dKO. Thus, we postulate that microcephaly in minor spliceosome-related diseases is primarily caused by cell cycle defects.


Assuntos
Íntrons/genética , Microcefalia/genética , Splicing de RNA/genética , Proteína Supressora de Tumor p53/genética , Animais , Ciclo Celular/genética , Morte Celular/genética , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Transcriptoma/genética
4.
Front Genet ; 12: 695597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276798

RESUMO

Small nuclear RNA is a class of non-coding RNA that widely exist in the nucleus of eukaryotes. Accumulated evidences have shown that small nuclear RNAs are associated with the regulation of gene expression in various tumor types. To explore the gene expression changes and its potential effects mediated by U11 snRNA in bladder cancer cells, U11 snRNA knockout and overexpressed cell lines were constructed and further used to analyze the gene expression changes by RNA sequencing. The differentially expressed genes were found to be mainly enriched in tumor-related pathways both in the U11 knockout and overexpression cell lines, such as NF-kappa B signaling pathway, bladder cancer and PI3K-Akt signaling pathway. Furthermore, alternative splicing events were proposed to participate in the potential regulatory mechanism induced by the U11 knockout or overexpression. In conclusion, U11 may be involved in the regulation of gene expression in bladder cancer cells, which may provide a potentially new biomarker for clinical diagnosis and treatment of bladder cancer.

5.
Rheumatology (Oxford) ; 61(1): 154-162, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33742673

RESUMO

OBJECTIVE: To analyse the prevalence, the clinical characteristics, the overall survival and the event-free survival (EFS) of SSc patients who express anti-U11/U12 RNP (RNPC-3) antibodies. METHODS: A total of 447 SSc patients from Barcelona (n = 286) and Milan (n = 161) were selected. All samples were tested using a particle-based multi-analyte technology. We compared anti-RNPC-3 positive and negative patients. Epidemiological, clinical features and survival were analysed. End-stage lung disease (ESLD) was defined if the patient developed forced vital capacity <50% of predicted, needed oxygen therapy or lung transplantation. EFS was defined as the period of time free of either ESLD or death. RESULTS: Nineteen of 447 (4.3%) patients had anti-RNPC-3 antibodies and interstitial lung disease (ILD) was more frequent (11, 57.9% vs 144, 33.6%, P =0.030) in individuals with anti-RNPC-3 antibodies. More patients reached ESLD in the positive group (7, 36.8% vs 74, 17.3%, P = 0.006), and a higher use of non-glucocorticoid immunosuppressive drugs was observed (11, 57.9% vs 130, 30.4%, P = 0.012). Anti-RNPC-3 positive patients had lower EFS, both in the total cohort (log-rank P =0.001), as well as in patients with ILD (log-rank P = 0.002). In multivariate Cox regression analysis, diffuse cutaneous subtype, age at onset, the presence of ILD or pulmonary arterial hypertension and the expression of anti-RNPC-3 positivity or anti-topo I were independently associated with worse EFS. CONCLUSION: The presence of anti-RNPC-3 was associated with higher frequency of ILD and either ESLD or death. These data suggest anti-RNPC-3 is an independent poor prognosis antibody in SSc, especially if ILD is also present.


Assuntos
Autoanticorpos/imunologia , Doenças Pulmonares Intersticiais/imunologia , Proteínas Nucleares/imunologia , Proteínas de Ligação a RNA/imunologia , Escleroderma Sistêmico/imunologia , Adulto , Intervalo Livre de Doença , Feminino , Humanos , Doenças Pulmonares Intersticiais/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Ribonucleoproteínas Nucleares Pequenas , Fatores de Risco , Escleroderma Sistêmico/mortalidade , Taxa de Sobrevida
6.
Proc Natl Acad Sci U S A ; 116(47): 23653-23661, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31694883

RESUMO

The activation of innate immune receptors by pathogen-associated molecular patterns (PAMPs) is central to host defense against infections. On the other hand, these receptors are also activated by immunogenic damage-associated molecular patterns (DAMPs), typically released from dying cells, and the activation can evoke chronic inflammatory or autoimmune disorders. One of the best known receptors involved in the immune pathogenesis is Toll-like receptor 7 (TLR7), which recognizes RNA with single-stranded structure. However, the causative DAMP RNA(s) in the pathogenesis has yet to be identified. Here, we first developed a chemical compound, termed KN69, that suppresses autoimmunity in several established mouse models. A subsequent search for KN69-binding partners led to the identification of U11 small nuclear RNA (U11snRNA) as a candidate DAMP RNA involved in TLR7-induced autoimmunity. We then showed that U11snRNA robustly activated the TLR7 pathway in vitro and induced arthritis disease in vivo. We also found a correlation between high serum level of U11snRNA and autoimmune diseases in human subjects and established mouse models. Finally, by revealing the structural basis for U11snRNA's ability to activate TLR7, we developed more potent TLR7 agonists and TLR7 antagonists, which may offer new therapeutic approaches for autoimmunity or other immune-driven diseases. Thus, our study has revealed a hitherto unknown immune function of U11snRNA, providing insight into TLR7-mediated autoimmunity and its potential for further therapeutic applications.


Assuntos
Glicoproteínas de Membrana/agonistas , RNA Nuclear Pequeno/imunologia , Receptor 7 Toll-Like/agonistas , Adulto , Alarminas/química , Animais , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Doenças Autoimunes/sangue , Doenças Autoimunes/imunologia , Sequência de Bases , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunossupressores/síntese química , Imunossupressores/farmacologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , RNA/imunologia , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/imunologia , Análise de Sequência de RNA , Receptor 7 Toll-Like/deficiência , Adulto Jovem
7.
Development ; 145(17)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30093551

RESUMO

Mutation in minor spliceosome components is linked to the developmental disorder microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Here, we inactivated the minor spliceosome in the developing mouse cortex (pallium) by ablating Rnu11, which encodes the crucial minor spliceosome small nuclear RNA (snRNA) U11. Rnu11 conditional knockout mice were born with microcephaly, which was caused by the death of self-amplifying radial glial cells (RGCs), while intermediate progenitor cells and neurons were produced. RNA sequencing suggested that this cell death was mediated by upregulation of p53 (Trp53 - Mouse Genome Informatics) and DNA damage, which were both observed specifically in U11-null RGCs. Moreover, U11 loss caused elevated minor intron retention in genes regulating the cell cycle, which was consistent with fewer RGCs in S-phase and cytokinesis, alongside prolonged metaphase in RGCs. In all, we found that self-amplifying RGCs are the cell type most sensitive to loss of minor splicing. Together, these findings provide a potential explanation of how disruption of minor splicing might cause microcephaly in MOPD1.


Assuntos
Ciclo Celular/genética , Morte Celular/fisiologia , Nanismo/genética , Células Ependimogliais/metabolismo , Retardo do Crescimento Fetal/genética , Microcefalia/genética , Células-Tronco Neurais/citologia , Osteocondrodisplasias/genética , Splicing de RNA/genética , RNA Nuclear Pequeno/genética , Spliceossomos/genética , Animais , Sequência de Bases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Spliceossomos/metabolismo , Proteína Supressora de Tumor p53/biossíntese
8.
RNA ; 24(3): 396-409, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29255062

RESUMO

Mutations in the components of the minor spliceosome underlie several human diseases. A subset of patients with isolated growth hormone deficiency (IGHD) harbors mutations in the RNPC3 gene, which encodes the minor spliceosome-specific U11/U12-65K protein. Although a previous study showed that IGHD patient cells have defects in U12-type intron recognition, the biochemical effects of these mutations on the 65K protein have not been characterized. Here, we show that a proline-to-threonine missense mutation (P474T) and a nonsense mutation (R502X) in the C-terminal RNA recognition motif (C-RRM) of the 65K protein impair the binding of 65K to U12 and U6atac snRNAs. We further show that the nonsense allele is targeted to the nonsense-mediated decay (NMD) pathway, but in an isoform-specific manner, with the nuclear-retained 65K long-3'UTR isoform escaping the NMD pathway. In contrast, the missense P474T mutation leads, in addition to the RNA-binding defect, to a partial defect in the folding of the C-RRM and reduced stability of the full-length protein, thus reducing the formation of U11/U12 di-snRNP complexes. We propose that both the C-RRM folding defect and NMD-mediated decrease in the levels of the U11/U12-65K protein reduce formation of the U12-type intron recognition complex and missplicing of a subset of minor introns leading to pituitary hypoplasia and a subsequent defect in growth hormone secretion.


Assuntos
Nanismo Hipofisário/genética , Modelos Moleculares , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos , Códon sem Sentido , Nanismo Hipofisário/metabolismo , Células HeLa , Humanos , Íntrons/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Prolina , RNA Nuclear Pequeno/química , Motivos de Ligação ao RNA , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Treonina
9.
RNA Biol ; 13(10): 1025-1040, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27618338

RESUMO

Pre-mRNA splicing in eukaryotes is performed by the spliceosome, a highly complex macromolecular machine. SF3b is a multi-protein complex which recognizes the branch point adenosine of pre-mRNA as part of a larger U2 snRNP or U11/U12 di-snRNP in the dynamic spliceosome machinery. Although a cryo-EM map is available for human SF3b complex, the structure and relative spatial arrangement of all components in the complex are not yet known. We have recognized folds of domains in various proteins in the assembly and generated comparative models. Using an integrative approach involving structural and other experimental data, guided by the available cryo-EM density map, we deciphered a pseudo-atomic model of the closed form of SF3b which is found to be a "fuzzy complex" with highly flexible components and multiplicity of folds. Further, the model provides structural information for 5 proteins (SF3b10, SF3b155, SF3b145, SF3b130 and SF3b14b) and localization information for 4 proteins (SF3b10, SF3b145, SF3b130 and SF3b14b) in the assembly for the first time. Integration of this model with the available U11/U12 di-snRNP cryo-EM map enabled elucidation of an open form. This now provides new insights on the mechanistic features involved in the transition between closed and open forms pivoted by a hinge region in the SF3b155 protein that also harbors cancer causing mutations. Moreover, the open form guided model of the 5' end of U12 snRNA, which includes the branch point duplex, shows that the architecture of SF3b acts as a scaffold for U12 snRNA: pre-mRNA branch point duplex formation with potential implications for branch point adenosine recognition fidelity.


Assuntos
Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
10.
RNA Biol ; 13(7): 670-9, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27232356

RESUMO

Although seven proteins unique to U12 intron-specific minor spliceosomes, denoted as U11/U12-65K, -59K, -48K, -35K, -31K, -25K, and -20K, have been identified in humans and the roles of some of them have been demonstrated, the functional role of most of these proteins in plants is not understood. A recent study demonstrated that Arabidopsis U11/U12-65K is essential for U12 intron splicing and normal plant development. However, the structural features and sequence motifs important for 65 K binding to U12 snRNA and other spliceosomal proteins remain unclear. Here, we demonstrated by domain-deletion analysis that the C-terminal region of the 65 K protein bound specifically to the stem-loop III of U12 snRNA, whereas the N-terminal region of the 65 K protein was responsible for interacting with the 59 K protein. Analysis of the interactions between each snRNP protein using yeast two-hybrid analysis and in planta bimolecular fluorescence complementation and luciferase complementation imaging assays demonstrated that the core interactions among the 65 K, 59 K, and 48 K proteins were conserved between plants and animals, and multiple interactions were observed among the U11/U12-snRNP proteins. Taken together, these results reveal that U11/U12-65K is an indispensible component of the minor spliceosome complex by binding to both U11/U12-59K and U12 snRNA, and that multiple interactions among the U11/U12-snRNP proteins are necessary for minor spliceosome assembly.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA de Plantas , RNA Nuclear Pequeno , Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Spliceossomos/genética , Spliceossomos/metabolismo
11.
J Exp Bot ; 67(11): 3397-406, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27091878

RESUMO

The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Íntrons , Splicing de RNA/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo
12.
Virology ; 489: 151-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26761397

RESUMO

All herpesviruses contain a tegument layer comprising a protein matrix; these proteins play key roles during viral assembly and egress. Here, liquid chromatography and tandem mass spectrometry analysis (LC-MS/MS) of proteins from human herpesvirus 6 (HHV-6)-infected cells revealed a possible association between two major tegument proteins, U14 and U11. This association was verified by immunoprecipitation experiments. Moreover, U11 protein was expressed during the late phase of infection and incorporated into virions. Finally, in contrast to its revertant, a U11 deletion mutant could not be reconstituted. Taken together, these results suggest that HHV-6 U11 is an essential gene for virus growth and propagation.


Assuntos
Herpesvirus Humano 6/metabolismo , Infecções por Roseolovirus/virologia , Proteínas Estruturais Virais/metabolismo , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/crescimento & desenvolvimento , Humanos , Ligação Proteica , Proteínas Estruturais Virais/genética
13.
Plant J ; 78(5): 799-810, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24606192

RESUMO

The U12-dependent introns have been identified in a wide range of eukaryotes and are removed from precursor-mRNAs by U12 intron-specific minor spliceosome. Although several proteins unique to minor spliceosome have been identified, the nature of their effect on U12 intron splicing as well as plant growth and development remain largely unknown. Here, we characterized the functional role of an U12-type spliceosomal protein, U11/U12-65K in Arabidopsis thaliana. The transgenic knockdown plants generated by artificial miRNA-mediated silencing strategy exhibited severe defect in growth and development, such as severely arrested primary inflorescence stems, serrated leaves, and the formation of many rosette leaves after bolting. RNA sequencing and reverse transcription polymerase chain reaction (RT-PCR) analyses revealed that splicing of 198 out of the 234 previously predicted U12 intron-containing genes and 32 previously unidentified U12 introns was impaired in u11/u12-65k mutant. Moreover, the U11/U12-65K mutation affected alternative splicing, as well as U12 intron splicing, of many introns. Microarray analysis revealed that the genes involved in cell wall biogenesis and function, plant development, and metabolic processes are differentially expressed in the mutant plants. U11/U12-65K protein bound specifically to U12 small nuclear RNA (snRNA), which is necessary for branch-point site recognition. Taken together, these results provide clear evidence that U11/U12-65K is an indispensible component of minor spliceosome and involved in U12 intron splicing and alternative splicing of many introns, which is crucial for plant development.


Assuntos
Arabidopsis/metabolismo , Íntrons/genética , Splicing de RNA/fisiologia , Spliceossomos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desenvolvimento Vegetal , Splicing de RNA/genética , Spliceossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA