Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400286, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851296

RESUMO

In this work, new glycine-derived polymers are developed that exhibit thermoresponsive properties in water. Therefore, a series of monomers containing one, two, or three amide functional groups and one terminal cyanomethyl group is synthesized. The resulting homopolymers, obtained by free radical polymerization (FRP) and reversible addition fragmentation chain transfer (RAFT) polymerization, display a sharp and reversible upper critical solution temperature (UCST)-type phase transition in water. Additionally, it is shown that the cloud point (TCP) can be adjusted over more than 60 °C by the number of glycyl groups present in the monomer structure and by the polymer's molar mass. These novel thermoresponsive polymers based on cyanomethylglycinamide enrich the range of nonionic UCST polymers and are promising to find applications in various fields.

2.
Gels ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786206

RESUMO

Thermoresponsive sol-gel transition polymers are of significant interest because of their fascinating biomedical applications, including as drug reservoirs for drug delivery systems and scaffolds for tissue engineering. Although extensive research has been conducted on lower critical solution temperature (LCST)-type sol-gel transition polymers, there have been few reports on upper critical solution temperature (UCST)-type sol-gel transition polymers. In this study, we designed an ABA-type triblock copolymer composed of a poly(ethylene glycol) (PEG) block and zwitterionic polymer blocks that exhibit UCST-type thermoresponsive phase transitions. A sulfobetaine (SB) monomer with both ammonium and sulfonate (-SO3) groups in its side chain or a sulfabetaine (SaB) monomer with both ammonium and sulfate (-OSO3) groups in its side chain was polymerized from both ends of the PEG block via reversible addition-fragmentation chain-transfer (RAFT) polymerization to obtain PSB-PEG-PSB and PSaB-PEG-PSaB triblock copolymers, respectively. Although an aqueous solution containing the PSB-PEG-PSB triblock copolymer showed an increase in viscosity upon cooling, it did not undergo a sol-to-gel transition. In contrast, a sol-to-gel transition was observed when a phosphate-buffered saline containing PSaB-PEG-PSaB was cooled from 80 °C to 25 °C. The PSaB blocks with -OSO3 groups exhibited a stronger dipole-dipole interaction than conventional SB with -SO3 groups, leading to intermolecular association and the formation of a gel network composed of PSaB assemblies bridged with PEG. The fascinating UCST-type thermoresponsive sol-gel transition properties of the PSaB-PEG-PSaB triblock copolymer suggest that it can provide a useful platform for designing smart biomaterials, such as drug delivery reservoirs and cell culture scaffolds.

3.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474553

RESUMO

This paper reports an innovative study that aims to address key issues in the efficient recycling of wastepaper cellulose. The research team utilized the temperature-responsive upper critical solution temperature (UCST) polymer P(NAGA-b-DMA) in combination with the LytA label's affinity for choline analogs. This innovative approach enabled them to successfully develop a novel soluble immobilized enzyme, P(NAGA-b-DMA)-cellulase. This new enzyme has proven highly effective, significantly enhancing the degradation of wastepaper cellulose while demonstrating exceptional stability. Compared with the traditional insoluble immobilized cellulase, the enzyme showed a significant improvement in the pH, temperature stability, recycling ability, and storage stability. A kinetic parameter calculation showed that the enzymatic effectiveness of the soluble immobilized enzyme was much better than that of the traditional insoluble immobilized cellulase. After the immobilization reaction, the Michaelis constant of the immobilized enzyme was only increased by 11.5%. In the actual wastepaper degradation experiment, the immobilized enzyme was effectively used, and it was found that the degradation efficiency of wastepaper cellulose reached 80% of that observed in laboratory conditions. This novel, thermosensitive soluble immobilized cellulase can efficiently catalyze the conversion of wastepaper cellulose into glucose under suitable conditions, so as to further ferment into environmentally friendly biofuel ethanol, which provides a solution to solve the shortage of raw materials and environmental protection problems in the paper products industry.


Assuntos
Celulase , Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Celulose/metabolismo , Celulase/metabolismo , Temperatura , Polímeros , Hidrólise
4.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38543445

RESUMO

Bilayer hydrogel actuators, consisting of an actuating layer and a functional layer, show broad applications in areas such as soft robotics, artificial muscles, drug delivery and tissue engineering due to their inherent flexibility and responses to stimuli. However, to achieve the compatibility of good stimulus responses and high mechanical properties of bilayer hydrogel actuators is still a challenge. Herein, based on the double-network strategy and using the synchronous ultraviolet (UV) polymerization method, an upper critical solution temperature (UCST)-type bilayer hydrogel actuator was prepared, which consisted of a poly(acrylamide-co-acrylic acid)[MC] actuating layer and an agar/poly(N-hydroxyethyl acrylamide-co-methacrylic acid)[AHA] functional layer. The results showed that the tensile stress/strain of the bilayer hydrogel actuator was 1161.21 KPa/222.07%. In addition, the UCST of bilayer hydrogels was ~35 °C, allowing the bilayer hydrogel actuator to be curled into an "◎" shape, which could be unfolded when the temperature was 65 °C, but not at a temperature of 5 °C. Furthermore, hydrogel actuators of three different shapes were designed, namely "butterfly", "cross" and "circle", all of which demonstrated good actuating performances, showing the programmable potential of bilayer hydrogels. Overall, the bilayer hydrogels prepared using double-network and synchronous UV polymerization strategies realized the combination of high mechanical properties with an efficient temperature actuation, which provides a new method for the development of bilayer hydrogel actuators.

5.
ACS Biomater Sci Eng ; 10(3): 1473-1480, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38404112

RESUMO

Inside cells, proteins complex with nucleic acids to form liquid droplets resulting from liquid-liquid phase separation. The presence of mutated proteins can change the state of these liquid droplets to solids or gels, triggering neurodegenerative diseases. The mechanism of the liquid to solid or gel transition is still unclear. Solutions of poly(l-ornithine-co-l-citrulline) (PLOC) copolymers, which exhibit upper critical solution temperature-type behavior, change state upon cooling. In this study, we evaluated the effect of nucleic acids complexed with PLOC on phase changes. In the presence of nucleic acids, such as polyC and polyU, PLOC formed liquid droplets at low temperatures. The droplets dissolved at temperatures above the phase separation temperature. The phase separation temperature depended on the chemical structure of the nucleobase, implying that electrostatic and hydrogen bonding interactions between the nucleic acid and PLOC influenced phase separation. Furthermore, the liquid droplets spontaneously changed to gel-like precipitates due to spontaneous release of nucleic acids from the complex. The rate of the liquid droplet-to-gel transition depended on the magnitude of electrostatic and hydrogen bonding interactions between PLOC and nucleic acid. PLOC complexed with mRNA also underwent a liquid droplet-to-gel transition upon the release of mRNA. This work provides insights into the mechanism of pathogenic transitions of the cellular droplets.


Assuntos
Citrulina , Peptídeos , Peptídeos/química , Temperatura , RNA Mensageiro , Géis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA