Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 2881-2894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100970

RESUMO

Background: The influence of genetic variants on the glucose-lowering effects of dapagliflozin remains unclear. This study aims to investigate the impact of polymorphisms in solute carrier family 5 member 2 (SLC5A2), uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9), solute carrier family 2 member 2 (SLC2A2) and member 4 (SLC2A4) on the anti-hyperglycemic effect of dapagliflozin in patients with type-2 diabetes mellitus (T2DM). Methods: A total of 141 patients with T2DM were included in this prospective cohort study. Twenty-nine single nucleotide polymorphisms (SNPs) were selected and genotyped using the Sequenom MassArray platform or Sanger sequencing. Glycated hemoglobin (HbA1c) and fasting blood glucose (FBG) levels were compared before and after the treatment with dapagliflozin. Results: Among the 29 SNPs selected, 27 were successfully analyzed. After three months of dapagliflozin treatment, FBG levels were significantly reduced (8.00 mmol/L (5.45-10.71) mmol/L vs 6.40 mmol/L (5.45-9.20) mmol/L, p = 0.003) in patients with T2DM. However, there was no significant change in HbA1c levels (8.10% (6.88-10.00)% vs 8.10% (6.83-10.00)%, p = 0.452). Analysis of covariance showed that patients with the minor allele homozygote or heterozygote of rs12471030 (CT/TT), rs12988520 (AC/CC) or rs2602381 (TC/CC) had higher FBG levels compared to those with the major allele homozygote (p = 0.014, p = 0.024, and p = 0.044, respectively). After adjusting for baseline FBG level, age, gender, body mass index, use of insulin and use of metformin, three SNPs-rs12471030, rs12988520 and rs2602381-were associated with the anti-hyperglycemic effect of dapagliflozin. However, using a stringent significance threshold (p < 0.002 with Bonferroni correction), none of these selected SNPs were significantly associated with FBG and HbA1c levels after dapagliflozin treatment. Conclusion: After adjusting for confounding variables, polymorphisms in SLC5A2, UGT1A9, SLC2A2 and SLC2A4 genes were not associated with the anti-hyperglycemic effect of dapagliflozin in the Chinese population. Clinical Trial Registration Number: ChiCTR2200059645.

2.
J Cell Signal ; 5(2): 51-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726221

RESUMO

In the quest for improving the clinical outcome of patients with metastatic genitourinary cancers, including metastatic renal cell carcinoma (mRCC), the emphasis often is on finding new targeted therapies. However, two studies by Jordan et al. (Oncogenesis 2020) and Wang et al. (Cancer Cell Int 2022) demonstrate the feasibility of improving the efficacy of a modestly effective drug Sorafenib against mRCC by attacking a mechanism hijacked by RCC cells for inactivating Sorafenib. The studies also identified hyaluronic acid synthase -3 (HAS3) as a bonafide target of Sorafenib in RCC cells. The studies demonstrate that an over-the-counter drug Hymecromone (4-methylumbelliferone) blocks inactivation of Sorafenib in RCC cells and improves its efficacy against mRCC through the inhibition of HAS3 expression and HA signaling. In the broader context, improving the efficacy of "old and failed drugs" that have favorable safety profiles should increase the availability of effective treatments for patients with advanced cancers.

3.
J Hazard Mater ; 465: 133439, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38218035

RESUMO

Uridine-disphosphate glucuronosyltransferase 1A9 (UGT1A9), an important detoxification and inactivation enzyme for toxicants, regulates the exposure level of environmental pollutants in the human body and induces various toxicological consequences. However, an effective tool for high-throughput monitoring of UGT1A9 function under exposure to environmental pollutants is still lacking. In this study, 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (DDAO) was found to exhibit excellent specificity and high affinity towards human UGT1A9. Remarkable changes in absorption and fluorescence signals after reacting with UGT1A9 were observed, due to the intramolecular charge transfer (ICT) mechanism. Importantly, DDAO was successfully applied to monitor the biological functions of UGT1A9 in response to environmental pollutant exposure not only in microsome samples, but also in living cells by using a high-throughput screening method. Meanwhile, the identified pollutants that disturb UGT1A9 functions were found to significantly influence the exposure level and retention time of bisphenol S/bisphenol A in living cells. Furthermore, the molecular mechanism underlying the inhibition of UGT1A9 by these pollutant-derived disruptors was elucidated by molecular docking and molecular dynamics simulations. Collectively, a fluorescent probe to characterize the responses of UGT1A9 towards environmental pollutants was developed, which was beneficial for elucidating the health hazards of environmental pollutants from a new perspective.


Assuntos
Dimetilaminas , Poluentes Ambientais , Glucuronosiltransferase , Humanos , Corantes Fluorescentes , Uridina , Simulação de Acoplamento Molecular
4.
Eur J Pharm Sci ; 180: 106328, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379359

RESUMO

Baicalin (BG) is a bioactive flavonoid extracted from the dried root of the medicinal plant, Scutellaria radix (SR) (dicotyledonous family, Labiatae), and has several biological activities. Polyethylene glycol 400 (PEG400) has been used as a suitable solvent for several traditional Chinese medicines (TCM) and is often used as an excipient for the compound preparation of SR. However, the drug-excipient interactions between BG and PEG400 are still unknown. Herein, we evaluated the effect of a single intravenous PEG400 administration on the BG levels of rats using pharmacokinetic and tissue distribution studies. A liver microsome and recombinant enzyme incubation system were used to further confirm the interaction mechanism between PEG400 and UDP-glucuronosyltransferases (UGTs) (UGT1A8 and UGT1A9). The pharmacokinetic study demonstrated that following the co-intravenous administration of PEG400 and BG, the total clearance (CLz) of BG in the rat plasma decreased by 101.60% (p < 0.05), whereas the area under the plasma concentration-time curve (AUC)0-t and AUC0-inf increased by 144.59% (p < 0.05) and 140.05% (p < 0.05), respectively. Additionally, the tissue distribution study showed that the concentration of BG and baicalein-6-O-ß-D-glucuronide (B6G) in the tissues increased, whereas baicalein (B) in the tissues decreased, and the total amount of BG and its metabolites in tissues altered following the intravenous administration of PEG400. We further found that PEG400 induced the UGT1A8 and UGT1A9 enzyme activities by affecting the maximum enzymatic velocity (Vmax) and Michaelis-Menten constant (Km) values of UGT1A8 and UGT1A9. In conclusion, our results demonstrated that PEG400 interaction with UGTs altered the pharmacokinetic behaviors and tissue distribution characteristics of BG and its metabolites in rats.


Assuntos
Flavonoides , Polietilenoglicóis , UDP-Glucuronosiltransferase 1A , Animais , Ratos , Flavonoides/administração & dosagem , Flavonoides/química , Flavonoides/farmacocinética , Microssomos Hepáticos/metabolismo , Polietilenoglicóis/química , Distribuição Tecidual , Injeções Intravenosas , UDP-Glucuronosiltransferase 1A/metabolismo
5.
Genomics Inform ; 20(3): e29, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36239106

RESUMO

Several studies have shown associations between irinotecan toxicity and UGT1A genetic variations in colorectal and lung cancer, but only limited data are available for gastric cancer patients. We evaluated the frequencies of UGT1A polymorphisms and their relationship with clinicopathologic parameters in 382 Korean gastric cancer patients. Polymorphisms of UGT1A1*6, UGT1A1*27, UGT1A1*28, UGT1A1*60, UGT1A7*2, UGT1A7*3, and UGT1A9*22 were genotyped by direct sequencing. In 98 patients treated with irinotecan-containing regimens, toxicity and response were compared according to the genotype. The UGT1A1*6 and UGT1A9*22 genotypes showed a higher prevalence in Korean gastric cancer patients, while the prevalence of the UG1A1*28 polymorphism was lower than in normal Koreans, as has been found in other studies of Asian populations. The incidence of severe diarrhea after irinotecan-containing treatment was more common in patients with the UGT1A1*6, UGT1A7*3, and UGT1A9*22 polymorphisms than in controls. The presence of the UGT1A1*6 allele also showed a significant association with grade III-IV neutropenia. Upon haplotype and diplotype analyses, almost every patient bearing the UGT1A1*6 or UGT1A7*3 variant also had the UGT1A9*22 polymorphism, and all severe manifestations of UGT1A polymorphism-associated toxicity were related to the UGT1A9*22 polymorphism. By genotyping UGT1A9*22 polymorphisms, we could identify high-risk gastric cancer patients receiving irinotecan-containing chemotherapy, who would experience severe toxicity. When treating high-risk patients with the UGT1A9*22 polymorphism, clinicians should closely monitor them for signs of severe toxicity such as intense diarrhea or neutropenia.

6.
Front Genet ; 13: 999132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246646

RESUMO

Purpose: Etomidate is widely used in general anesthesia and sedation, and significant individual differences are observed during anesthesia induction. This study aimed to explore the molecular mechanisms of different etomidate susceptibility at the genetic level. Methods: 128 patients were enrolled in the study. The bispectral index (BIS), mean arterial pressure (MAP) and heart rate (HR) were recorded when the patients entered the operating room for 5 min, before the administration of etomidate, 30 s, 60 s, 90 s, 120 s and 150 s after the administration of etomidate, and the corresponding single nucleotide polymorphisms (SNPs) were analyzed. Results: Significant individual differences were observed in etomidate anesthesia. The results of two-way ANOVA showed that CYP2C9 rs1559, GABRB2 rs2561, GABRA2 rs279858, GABRA2 rs279863 were associated with the BIS value during etomidate anesthesia; UGT1A9 rs11692021 was associated with the Extended Observer's Assessment of Alertness and Sedation (EOAA/S) score during etomidate anesthesia; GABRB2 rs2561 was associated with MAP. Multiple linear stepwise regression model results showed that CYP2C9 rs1559, GABRA2 rs279858 and GABRB2 rs2561 were associated with the BIS value and UGT1A9 rs11692021 was associated with the EOAA/S score; GABRB2 rs2561 was associated with MAP. Conclusion: GABRA2 rs279858, GABRB2 rs2561, CYP2C9 rs1559 and UGT1A9 rs11692021 are the SNPs with individual differences during etomidate anesthesia. This is the first to study the SNPs of etomidate, which can provide certain evidence for the future use of etomidate anesthesia and theoretical basis for precision anesthesia.

7.
Curr Drug Metab ; 23(11): 912-919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36306450

RESUMO

BACKGROUND: Cabozantinib is a multiple receptor tyrosine kinases inhibitor (TKI) approved to treat progressive, metastatic medullary thyroid cancer, advanced renal cell carcinoma, and hepatocellular carcinoma. Drugdrug interactions (DDIs) for cabozantinib have been identified involving the role of cytochromes P450. Although the previous study reported that cabozantinib showed a slight inhibition of UDP-glucuronosyltransferase (UGT) 1A1 at the highest concentration tested, there are no reports on the potential for UGTs-mediated-DDIs. Hence, the current study aims to address this knowledge gap. OBJECTIVE: This study aimed to investigate the inhibitory effect of cabozantinib on human UGTs and to quantitatively evaluate the DDI potential via UGT inhibition. METHODS: The inhibitory effects of cabozantinib on UGTs were determined by measuring the formation rates for 4- methylumbelliferone (4-MU) glucuronide and trifluoperazine N-glucuronide using recombinant human UGT isoforms in the absence or presence of cabozantinib. Inhibition kinetic studies were conducted to determine the type of inhibition of cabozantinib on UGTs and the corresponding inhibition constant (Ki) value. In vitro-in vivo extrapolation (IVIVE) was further employed to predict the potential risk of DDI in vivo. RESULTS: Cabozantinib displayed potent inhibition of UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, and 2B15. Cabozantinib exhibited noncompetitive inhibition towards UGT1A1 and 1A3 and inhibition towards UGT1A7 and 1A9. The Ki,u values (mean ± standard deviation) were calculated to be 2.15±0.11 µM, 0.83±0.05 µM, 0.75±0.04 µM and 0.18 ± 0.10 µM for UGT1A1, 1A3, 1A7 and 1A9, respectively. Co-administration of cabozantinib at the clinically approved dose of 60 mg/day or 140 mg/day may result in approximately a 26% to 60% increase in the systemic exposure of drugs predominantly cleared by UGT1A9, implying a high risk of DDIs. CONCLUSION: Cabozantinib has the potential to cause DDIs via the inhibition of UGT1A9; therefore, additional attention should be paid to the safety of the combined use of cabozantinib and drugs metabolized by UGT1A9.


Assuntos
Glucuronídeos , Piridinas , Humanos , Cinética , Glucuronídeos/metabolismo , Piridinas/farmacologia , Interações Medicamentosas , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo
8.
Eur J Clin Pharmacol ; 78(8): 1227-1238, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35524809

RESUMO

PURPOSE: To investigate the associations of IMPDH and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking mycophenolic acid (MPA). METHODS: PubMed, Web of Science, Embase, Cochrane Library, Wanfang Data, and the China Academic Journal Network Publishing Database were systematically searched for studies investigating the associations of IMPDH1, IMPDH2, and UGT1A9 polymorphisms with rejection in kidney transplant recipients taking MPA. Associations were evaluated by pooled odds ratios (ORs) and effect sizes (ESs) with 95% confidence intervals (CIs). RESULTS: Twelve studies were included in the analysis, including a total of 2342 kidney transplant recipients. The results showed that compared with the TC + CC variant genotypes, the TT genotype of IMPDH2 3757 T > C was significantly associated with a higher risk of rejection (ES = 1.60, 95% CI = 1.07-2.40, P = 0.021), while there was no significant association of the IMPDH2 3757 T > C polymorphism with acute rejection within 1 year in kidney transplant recipients (OR = 1.49, 95% CI = 0.79-2.80, P = 0.217; ES = 1.44, 95% CI = 0.88-2.36, P = 0.142). The GG genotypes of IMPDH1 125G > A and IMPDH1 106G > A were significantly associated with a higher risk of rejection (ES = 1.91, 95% CI = 1.11-3.28, P = 0.019) and acute rejection within 1 year (ES = 2.12, 95% CI = 1.45-3.10, P < 0.001) than the variant genotypes GA + AA. The TT genotype of UGT1A9 275 T > A showed a decreased risk of rejection compared with the variant genotypes TA + AA (ES = 0.44, 95% CI = 0.23-0.84, P = 0.013). CONCLUSIONS: IMPDH1, IMPDH2, and UGT1A9 polymorphisms were associated with rejection in kidney transplant recipients, and the genetic backgrounds of patients should be considered when using MPA.


Assuntos
Transplante de Rim , Ácido Micofenólico , Genótipo , Rejeição de Enxerto/genética , Rejeição de Enxerto/prevenção & controle , Humanos , Imunossupressores/uso terapêutico , Ácido Micofenólico/uso terapêutico , Polimorfismo de Nucleotídeo Único , UDP-Glucuronosiltransferase 1A
9.
J Pers Med ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629143

RESUMO

Acetaminophen (paracetamol) is a widely used drug that causes adverse drug events that are often dose-dependent and related to plasma drug concentrations. Acetaminophen metabolism strongly depends on UGT1A enzymes. We aimed to investigate putative factors influencing acetaminophen pharmacokinetics. We analyzed acetaminophen pharmacokinetics after intravenous administration in 186 individuals, and we determined the effect of sex; body mass index (BMI); previous and concomitant therapy with UGT1A substrates, inhibitors, and inducers; as well as common variations in the genes coding for UGT1A1, UGT1A6, and UGT1A9. We identified sex and UGT1A6 genetic variants as major factors influencing acetaminophen pharmacokinetics, with women showing lower clearance (p < 0.001) and higher area under the plasma drug concentration-time curve (AUC) values than men (p < 0.001). UGT1A6 genetic variants were related to decreased acetaminophen biodisposition. Individuals who were homozygous or double-heterozygous for variant UGT1A6 alleles showed a 22.5% increase in t1/2 values and a 22.8 increase in drug exposure (p < 0.001, and 0.006, respectively) after correction by sex. The effect is related to the UGT1A6*2 and UGT1A6*4 variant alleles, whereas no effect of UGT1A6*3 and UGT1A9*3 alleles, BMI, or drug−drug interaction was identified in this study. We conclude that sex and UGT1A6 variants determine acetaminophen pharmacokinetics, thus providing evidence to eventually developing pharmacogenomics procedures and recommendations for acetaminophen use.

10.
Pharmgenomics Pers Med ; 15: 105-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173461

RESUMO

PURPOSE: To explore the effect of gene polymorphisms of propofol GABAA receptor and metabolic enzyme on drug susceptibility during the induction period of general anesthesia. PATIENTS AND METHODS: A total of 294 female patients aged 18-55 years, ASA I-II, who underwent hysteroscopy with intravenous general anesthesia, were included in the study. Anesthesia was induced by continuous intravenous infusion of propofol at 40 mg·kg-1·h-1. Infusion of propofol was ended when both the Modified Observer's Assessment of Awareness/Sedation scale (MOAA/S scale) decreased to 1 and the BIS index decreased to 60. The time when the MOAA/S scale decreased to 1 and the time when BIS index decreased to 60 was recorded to assess the susceptibility to the sedation effect. The maximum decreased percentage in mean arterial pressure (MAP) within 5 minutes was recorded to assess the susceptibility of cardiovascular response. Venous blood of each patient was collected to identify the presence of genetic variants in the GABRA1, GABRA2, GABRB2, GABRB3, GABRG2, CYP2B6, and UGT1A9 genes using the Sequenom MassARRAY® platform. RESULTS: After receiving propofol infusion, carriers of polymorphic GABRA1 rs4263535 G allele required significantly less time for BIS decreased to 60, while carriers of polymorphic GABRB2 rs3816596 T allele required significantly more time for BIS decreased to 60, carriers of polymorphic GABRA1 rs1157122 C allele and carriers of polymorphic GABRB2 rs76774144 T allele had a significantly less change in MAP. CONCLUSION: GABRB2 rs3816596 and GABRA1 rs4263535 polymorphisms are associated with susceptibility to the sedation effect of propofol. GABRA1 rs1157122 and GABRB2 rs76774144 polymorphisms are associated with the degree of drop in blood pressure after propofol infusion.

11.
Drug Metab Pharmacokinet ; 43: 100440, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35051732

RESUMO

As a natural flavonoid, kaempferol is widely distributed in natural medicines. Our study was aimed at analyzing and comparing the pharmacokinetic differences of kaempferol between normoxia and hypoxia in rats, to further explore the effect of hypoxia on drug metabolism enzymes. A sensitive UPLC-MS/MS method was established and validated for the determination of kaempferol in rat plasma. The results indicated that AUC, MRT, t1/2 and Cmax of kaempferol significantly increased and the clearance reduced in hypoxic rats. Based on the comparison of pharmacokinetics, the metabolites of kaempferol in hypoxic rats were identified by using UPLC-QTOF-MS and UNIFI 1.8 software. Then we explored the effect of hypoxia on the mRNA and protein expression of CYP1A2 and UGT1A9. The study revealed that hypoxia could markedly reduce the mRNA and protein expression of CYP1A2 and UGT1A9, resulting in the reduction of metabolic rate and enhancement of systematic exposure. Our data also indicated that we should pay attention to adjusting the dosage regimen and reducing drug interactions when drugs metabolized by CYP1A2 and UGT1A9 are used in combination with kaempferol. Our findings suggested the potential requirement for dose adjustment of kaempferol or its structural analogs in hypoxic condition.


Assuntos
Quempferóis , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Hipóxia , Ratos , Espectrometria de Massas em Tandem/métodos
12.
Front Pharmacol ; 13: 1063413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588725

RESUMO

Tuberculosis (TB) is an infectious disease that occurs globally. Treatment of TB has been hindered by problems with multidrug-resistant strains (MDR-TB). Fluoroquinolones are one of the main drugs used for the treatment of MDR-TB. The success of therapy can be influenced by genetic factors and their impact on pharmacokinetic parameters. This review was conducted by searching the PubMed database with keywords polymorphism and fluoroquinolones. The presence of gene polymorphisms, including UGT1A1, UGT1A9, SLCO1B1, and ABCB1, can affect fluoroquinolones pharmacokinetic parameters such as area under the curve (AUC), creatinine clearance (CCr), maximum plasma concentration (Cmax), half-life (t1/2) and peak time (tmax) of fluoroquinolones.

13.
Br J Clin Pharmacol ; 88(4): 1942-1946, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34687551

RESUMO

Dapagliflozin is an inhibitor of human renal sodium-glucose cotransporter 2 (SGLT2), first approved for the treatment of type 2 diabetes mellitus (T2DM). Dapagliflozin is primarily metabolized by uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). The effect of UGT1A9 polymorphisms on dapagliflozin apparent oral clearance (CL/F) was studied with dapagliflozin population pharmacokinetic data and UGT1A9 genotype data (I.399C>T, rs2011404, rs6759892, rs7577677, rs4148323, UGT1A9*2 and UGT1A9*3) from a Phase 2 study conducted in subjects with T2DM (n = 187). An analysis of covariance (ANCOVA) model accounting for known covariates influencing dapagliflozin CL/F was applied to these data to quantify the impact of each UGT1A9 polymorphism relative to the wildtype UGT1A9 genotype. The analysis showed that the geometric mean ratios of dapagliflozin CL/F for all of the UGT1A9 polymorphisms studied were within the range of wildtype UGT1A9 CL/F values. Consequently, the polymorphisms of UGT1A9 studied had no clinically meaningful impact on the CL/F of dapagliflozin.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucosídeos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Hipoglicemiantes , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , UDP-Glucuronosiltransferase 1A
14.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34832976

RESUMO

Propylthiouracil (PTU) is commonly prescribed for the management of hyperthyroidism and thyrotoxicosis. Although the exact mechanism of action is not fully understood, PTU is associated with hepatoxicity in pediatric population. Glucuronidation mediated by uridine 5'-diphospho-glucuronosyltransferases (UGTs), which possess age-dependent expression, has been proposed as an important metabolic pathway of PTU. To further examine the metabolism of PTU, a reliable HPLC-MS/MS method for the simultaneous quantification of PTU and its N-ß-D glucuronide (PTU-GLU) was developed and validated. The chromatographic separation was achieved on a ZORBAX Extend-C18 column (2.1 × 50 mm, 1.8 µm) through gradient delivery of a mixture of formic acid, methanol and acetonitrile. The electrospray ionization (ESI) was operated in its negative ion mode while PTU and PTU-GLU were detected by multiple reaction monitoring (MRM). This analytical method displayed excellent linearity, sensitivity, accuracy, precision, recovery and stability while its matrix effect and carry-over were insignificant. Subsequently, the in vitro metabolism of PTU was assessed and UGT1A9 was identified as an important UGT isoform responsible for the glucuronidation of PTU. The information obtained from this study will facilitate future mechanistic investigation on the hepatoxicity of PTU and may optimize its clinical application.

15.
Eur J Pharm Sci ; 161: 105786, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33684484

RESUMO

UDP-glucuronosyltransferase 1A9 (UGT1A9) is one of the most important UGT isoforms, and plays an important role in the metabolic elimination of therapeutic drugs via glucuronidation. Herbal medicines affecting the activity of UGT1A9 may influence the metabolism of related drugs, thus causing herb-drug interactions and even adverse effects. However, few methods are available to evaluate the activity of UGT1A9. In this study, a natural product glabrone was discovered as an isoform-specific probe substrate for UGT1A9. The Vmax and Km values of glabrone were 362.6 nmol/min/mg protein and 17.2 µM for human liver microsomes (HLMs), and 382.3 nmol/min/mg protein and 16.6 µM for recombinant human UGT1A9, respectively. Glabrone 7-O-glucuronide, the UGT1A9 metabolite of glabrone, was prepared by using a plant glucuronosyltransferase UGT88D1, and the structure was identified by NMR spectroscopy. Using glabrone as a probe, we established a rapid HPLC method to screen UGT1A9 inhibitors from 54 natural products isolated from the Chinese herbal medicine licorice. Among them, glycycoumarin was found as a potent UGT1A9 inhibitor with an IC50 value of 6.04 µM. In rats, the pretreatment of glycycoumarin (4 mg/kg, i.p.) for 3 days could remarkably increase the plasma concentrations of dapagliflozin while decrease the concentrations of dapagliflozin-O-glucuronide after administration of dapagliflozin (1 mg/kg, i.v.), which is mainly metabolized by UGT1A9. The results indicated the potential risk of herb-drug interactions between licorice and UGT1A9-metabolizing drugs.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Animais , Cumarínicos , Glucuronosiltransferase/metabolismo , Cinética , Microssomos Hepáticos/metabolismo , Ratos , UDP-Glucuronosiltransferase 1A
16.
Curr Drug Metab ; 22(5): 342-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33459227

RESUMO

BACKGROUND: Graft acceptance against immunity is one of the major challenges in solid organ transplant. Immunosuppressive medications have effectively improved the post-transplantation outcome however, it has its own limitations. Genetic polymorphisms in drug-metabolizing enzymes have been identified as the potential targets in developing a pharmacogenetic strategy, to individualize drug dose and also in preventing the adverse events. OBJECTIVE: The rationale of the study was to explore polymorphisms in tacrolimus and mycophenolate metabolic pathways that influence the adverse clinical outcomes in renal transplant recipients. METHODS: A total of 255 renal transplant recipients were analyzed for the pharmacogenetic determinants of tacrolimus (CYP3A5*3 ABCB1 1236 T>C ABCB1 2677 G>A/T ABCB1 3435 T>C) and mycophenolate (UGT1A8*3 UGT1A9 IMPDH I IMPDH II c.787C>T ABCC2 -24 C>T and c.3972C>T) using Sanger sequencing. RESULTS: Acute rejection (AR) was observed in 5.88% of the transplant recipients whereas acute tubular necrosis (ATNs) was observed in 7.45% of the patients within early stage of the maintenance phase. Infections such as urinary tract infection (UTI) and cytomegalovirus (CMV) infection were observed in 11.37% and 12.16% of the patients. The AUC of mycophenolate was significantly higher in patients with increased risk for infections. ABCC2 -24 C>T c.3972C>T polymorphisms and ABCB1 3435 C-allele were associated with reduced risk for infections. ABCC2 rs3740066 was associated with 2.06-fold all-cause mortality risk. CYP3A5 AG- and UGT1A9-440 CC-genotypes showed increased risk and ABCC 3972C>T CC-genotype showed protection against adverse events. CONCLUSION: Genetic variants in tacrolimus and mycophenolate metabolic pathways were found to influence the morbidity and mortality in renal transplant recipients.


Assuntos
Imunossupressores/administração & dosagem , Transplante de Rim/efeitos adversos , Ácido Micofenólico/administração & dosagem , Polimorfismo Genético/efeitos dos fármacos , Tacrolimo/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adulto , Citocromo P-450 CYP3A/genética , Feminino , Humanos , IMP Desidrogenase/genética , Imunossupressores/sangue , Imunossupressores/farmacologia , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Ácido Micofenólico/sangue , Ácido Micofenólico/farmacologia , Farmacogenética , Tacrolimo/sangue , Tacrolimo/farmacologia , UDP-Glucuronosiltransferase 1A/genética
17.
Clin Pharmacol Drug Dev ; 10(1): 57-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32687695

RESUMO

Sitafloxacin, a new fluoroquinolone, has strong antibacterial activity. We evaluated the effects of sitafloxacin granules in single-dose and multidose cohorts and the effects of ABCB1, UGT1A1, and UGT1A9 genetic polymorphisms on the pharmacokinetics (PK) of sitafloxacin in healthy subjects. The single-dose study included 3 fasted cohorts receiving 50, 100, and 200 mg of sitafloxacin granules and 1 cohort receiving 50 mg of sitafloxacin granules with a high-fat meal. The multidose study included 1 cohort receiving 100 mg of sitafloxacin granules once daily for 5 days. PK parameters were calculated using noncompartmental parameters based on concentration-time data. The genotypes for ABCB1, UGT1A1, and UGT1A9 single-nucleotide polymorphisms were determined using Sanger sequencing. Subsequently, the association between sitafloxacin PK parameters and target single-nucleotide polymorphisms was analyzed. Sitafloxacin granules were well tolerated up to 200 and 100 mg in the single-dose and multidose studies, respectively. Sitafloxacin AUC and Cmax increased linearly within the detection range, and a steady state was reached within 3 days after the administration of multiple oral doses. Our findings showed that Cmax was lower in the ABCB1 (rs1045642) mutation group, whereas t1/2 was longer in the UGT1A1 (rs2741049) and UGT1A9 (rs3832043) mutation groups. In conclusion, sitafloxacin granules were safe at single doses and multiple doses up to 200 and 100 mg/day, respectively, with a linear plasma PK profile. However, ABCB1 (rs1045642), UGT1A1 (rs2741049), and UGT1A9 (rs3832043) genetic polymorphisms are likely to influence the Cmax or t1/2 and thereby merit further clinical evaluation.


Assuntos
Antibacterianos/farmacocinética , Fluoroquinolonas/farmacocinética , Glucuronosiltransferase/genética , UDP-Glucuronosiltransferase 1A/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Administração Oral , Adolescente , Adulto , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Estudos Cross-Over , Formas de Dosagem , Jejum/metabolismo , Feminino , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/efeitos adversos , Interações Alimento-Droga , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Adulto Jovem
18.
Front Pharmacol ; 10: 496, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133859

RESUMO

Fraxetin, a natural compound present in many dietary supplements and herbs, is useful in the treatment of acute bacillary dysentery and type 2 diabetes. Previously, several metabolic studies have revealed extensive first-pass metabolism causing formation of fraxetin-O-glucuronides (G1 and G2), resulting in poor bioavailability of fraxetin. Active transport processes play an important role in the excretion of fraxetin-O-glucuronides. Nevertheless, the transporters involved are yet to be elucidated. In this study, we aimed to determine the active efflux transporters, including breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), involved in the excretion of fraxetin-O-glucuronides. A chemical inhibitor, MK571 (5 and 20 µM), a pan-MRP inhibitor, led to a significant decrease in excreted G1 (maximal 59.1%) and G2 levels (maximal 42.4%), whereas Ko143 (5 and 20 µM), a selective BCRP inhibitor, caused moderate downregulation of excreted G1 (maximal 29.4%) and G2 (maximal 28.5%). Furthermore, MRP3 silencing resulted in a marked decrease of excretion rates (by 29.1% for G1 and by 21.1% for G2) and of fraction metabolized (f met; by 24.1% for G1 and by 18.6% for G2). Similar results, i.e., a significant reduction in excretion rates (by 34.8% for G1 and by 32.3% for G2) and in f met (by 22.7% for G1 and by 23.1% for G2) were obtained when MRP4 was partially silenced. No obvious modifications in the excretion rates, intracellular levels, and f met values of glucuronides were observed after short hairpin RNA (shRNA)-mediated silencing of transporters BCRP and MRP1. Taken together, our results indicate that MRP3 and MRP4 contribute more to the excretion of fraxetin-O-glucuronides than the other transporters do.

19.
Cancer Lett ; 454: 14-25, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30910587

RESUMO

Patients receiving sorafenib treatment for hepatocellular carcinoma (HCC) experience different treatment efficacy. Personalized sorafenib treatment should be achieved through the identification of predictors of therapeutic response. In the current study, we found that high UGT1A9 expression indicated better prognosis for HCC patients treated with sorafenib after surgery. In silico analysis predicted microRNA-200a/-183 as potential regulators of the UGT1A gene family via binding to the shared UGT1A9 3'-UTR. A significant inverse correlation between microRNA-200a/-183 and UGT1A9 mRNA level was observed in a panel of HCC specimens. Direct binding was further demonstrated by luciferase reporter gene vector carrying wild-type or binding site truncated UGT1A9 3'-UTR. MicroRNA-200a/-183 downregulated UGT1A9 expression in a dose-dependent manner and significantly reduced sorafenib ß-D-glucuronide formation in HCC cells. These data indicated that UGT1A9, under epigenetic regulation of microRNA-200a/-183, could predict patients who might benefit from adjuvant sorafenib treatment after surgery.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Glucuronosiltransferase/genética , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , Sorafenibe/farmacologia , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Epigênese Genética , Glucuronosiltransferase/biossíntese , Glucuronosiltransferase/metabolismo , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , UDP-Glucuronosiltransferase 1A , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biopharm Drug Dispos ; 40(2): 94-98, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30636046

RESUMO

Licoricidin is a major prenylated isoflavone of Glycyrrhiza uralensis Fisch. (Leguminosae), and its pharmacological effects have been reported frequently. Typically, flavonoids having multiple hydroxyl groups are unambiguous substrates for glucuronyl conjugation by UDP-glucuronosyltransferases (UGTs). The pharmacological effects of flavonoids are derived from the conjugation of glucuronide to yield the bioactive metabolite. Here, the metabolism of licoricidin in pooled human liver microsomes (HLMs) was investigated using high-resolution quadrupole-orbitrap mass spectrometry. One metabolite (M1) was identified in HLMs after incubation with licoricidin in the presence of uridine 5'-diphosphoglucuronic acid (UDPGA) and NADPH. The structure of M1 was determined as a monoglucuronyl licoricidin, which was selectively produced by UGT1A9. Licoricidin showed a higher metabolic ratio and rapid metabolism with the recombinant human UGT1A9 than mycophenolic acid, a well-known UGT1A9 substrate. In conclusion, the selective formation of 7-glucuronyl licoricidin by UGT1A9 in HLMs could serve as a new selective substrate to determine the activity of UGT1A9 in vitro.


Assuntos
Benzopiranos/metabolismo , Benzopiranos/farmacologia , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Benzopiranos/isolamento & purificação , Glycyrrhiza uralensis/química , Humanos , Técnicas In Vitro , Microssomos Hepáticos/metabolismo , Raízes de Plantas/química , UDP-Glucuronosiltransferase 1A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA