Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 118: 110068, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001386

RESUMO

Enhancer of zeste homolog 2 (EZH2), a core component of polycomb repressive component 2 is overexpressed in a variety of cancers and recognized as a therapeutic target molecule. However, EZH2 possesses immunomodulatory functions in the tumor microenvironment (TME). The impact of EZH2 on TME of hepatocellular carcinoma (HCC) using immunocompetent mouse model was evaluated in the present study. UNC1999, an EZH2 inhibitor, impaired growth of the murine HCC cells (H22 cells) and induced apoptosis in a dose-dependent manner. Although UNC1999 significantly inhibited the growth of H22 cells-derived and Hepa1-6 cells-derived tumors in nonobese diabetic/severe combined immunodeficiency mice, its antitumor effect was diminished in allogenic BALB/c and C57BL/6 mice. Flow cytometric analyses of TME cells in BALB/c mice demonstrated a significant decrease in the number of interferon­Î³+ CD8+ T cells and regulatory T cells and a significant increase in the number of myeloid-derived suppressor cells (MDSCs). Administration of Gr-1 neutralizing antibody concomitant with UNC1999 restored antitumor effect accompanied by an increase in the number of CD8+ T cells followed by a decrease in the number of MDSCs. Chemokine antibody array demonstrated an enhanced expression of chemokines responsible for MDSCs recruitment such as C5a, CCL8, and CCL9. In conclusion, the study results demonstrated that EZH2 inhibitor contributed to attenuation of tumor immunity caused by TME arrangement. Combination therapy with EZH2 inhibitors and agents that reduce MDSCs might represent a novel therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias Hepáticas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Microambiente Tumoral , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Inibidores Enzimáticos/uso terapêutico , Linhagem Celular Tumoral
2.
Front Genet ; 13: 1013475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276954

RESUMO

Although gene mutations and aberrant chromosomes are associated with the pathogenesis and prognosis of uveal melanoma (UM), potential therapeutic targets still need to be explored. We aim to determine the predictive value and potential therapeutic target of EZH2 in uveal melanoma. Eighty-five uveal melanoma samples were recruited in our study, including 19 metastatic and 66 nonmetastatic samples. qRT-PCR, immunohistochemistry staining, and western blotting were applied to detect the expression of EZH2 and H3K27me3. We found that EZH2 (41/85, 48.24%) and H3K27me3 (49/85, 57.65%) were overexpressed in uveal melanoma. The expression of EZH2 was not significantly associated with metastasis. High H3K27me3 expression was correlated with poor patient prognosis. UNC 1999, an EZH2 inhibitor, can downregulate H3K27me3 expression and has the most potency to inhibit OMM1 cell growth by the cell cycle and ferroptosis pathway. These results indicate that H3K27me3 can be a biomarker predicting a poor prognosis of UM. EZH2 is the potential therapeutic target for UM.

3.
Bioanalysis ; 14(2): 67-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841882

RESUMO

Aim: We aimed to establish and validate a simple and sensitive UPLC-MS/MS method for the determination of UNC1999, a dual inhibitor against EZH1 and EZH2 in plasma samples. Materials & methods: UNC1999 in rat plasma was processed with protein precipitation method and then separated on a C18 column and detected under positive ionization mode. The method presented good linearity over the range of 1.0-2000 ng/ml with good accuracy and precision. UNC1999 was absorbed slowly and achieved a maximum concentration of 118.8 ± 12.0 ng/ml 1.5 h after oral administration. Conclusion: The method provides a favorable character in selectivity, linearity, accuracy, precision, recovery, matrix effects and stabilities and was suitable for describing the pharmacokinetic profile of UNC1999.


Assuntos
Benzamidas/uso terapêutico , Cromatografia Líquida de Alta Pressão/métodos , Indazóis/uso terapêutico , Piperazinas/uso terapêutico , Piridonas/uso terapêutico , Espectrometria de Massas em Tandem/métodos , Animais , Benzamidas/farmacologia , Indazóis/farmacologia , Masculino , Piperazinas/farmacologia , Piridonas/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Oncotarget ; 8(6): 10213-10224, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28052011

RESUMO

Multiple Myeloma (MM) is a plasma cell tumor localized to the bone marrow (BM). Despite the fact that current treatment strategies have improved patients' median survival time, MM remains incurable. Epigenetic aberrations are emerging as important players in tumorigenesis making them attractive targets for therapy in cancer including MM. Recently, we suggested the polycomb repressive complex 2 (PRC2) as a common denominator of gene silencing in MM and presented the PRC2 enzymatic subunit enhancer of zeste homolog 2 (EZH2) as a potential therapeutic target in MM. Here we further dissect the anti-myeloma mechanisms mediated by EZH2 inhibition and show that pharmacological inhibition of EZH2 reduces the expression of MM-associated oncogenes; IRF-4, XBP-1, PRDM1/BLIMP-1 and c-MYC. We show that EZH2 inhibition reactivates the expression of microRNAs with tumor suppressor functions predicted to target MM-associated oncogenes; primarily miR-125a-3p and miR-320c. ChIP analysis reveals that miR-125a-3p and miR-320c are targets of EZH2 and H3K27me3 in MM cell lines and primary cells. Our results further highlight that polycomb-mediated silencing in MM includes microRNAs with tumor suppressor activity. This novel role strengthens the oncogenic features of EZH2 and its potential as a therapeutic target in MM.


Assuntos
Antineoplásicos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Genes Supressores de Tumor , MicroRNAs/genética , Mieloma Múltiplo/tratamento farmacológico , Oncogenes , Piridonas/farmacologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcriptoma , Células Tumorais Cultivadas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
5.
Oncotarget ; 7(37): 59360-59376, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27449082

RESUMO

Glioblastoma (GBM) is the most lethal and aggressive adult brain tumor, requiring the development of efficacious therapeutics. Towards this goal, we screened five genetically distinct patient-derived brain-tumor initiating cell lines (BTIC) with a unique collection of small molecule epigenetic modulators from the Structural Genomics Consortium (SGC). We identified multiple hits that inhibited the growth of BTICs in vitro, and further evaluated the therapeutic potential of EZH2 and HDAC inhibitors due to the high relevance of these targets for GBM. We found that the novel SAM-competitive EZH2 inhibitor UNC1999 exhibited low micromolar cytotoxicity in vitro on a diverse collection of BTIC lines, synergized with dexamethasone (DEX) and suppressed tumor growth in vivo in combination with DEX. In addition, a unique brain-penetrant class I HDAC inhibitor exhibited cytotoxicity in vitro on a panel of BTIC lines and extended survival in combination with TMZ in an orthotopic BTIC model in vivo. Finally, a combination of EZH2 and HDAC inhibitors demonstrated synergy in vitro by augmenting apoptosis and increasing DNA damage. Our findings identify key epigenetic modulators in GBM that regulate BTIC growth and survival and highlight promising combination therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Piridonas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dexametasona/uso terapêutico , Sinergismo Farmacológico , Quimioterapia Combinada , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos SCID , Terapia de Alvo Molecular , Piridonas/farmacologia , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 7(6): 6809-23, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26755663

RESUMO

Multiple myeloma (MM) is a malignancy of the antibody-producing plasma cells. MM is a highly heterogeneous disease, which has hampered the identification of a common underlying mechanism for disease establishment as well as the development of targeted therapy. Here we present the first genome-wide profiling of histone H3 lysine 27 and lysine 4 trimethylation in MM patient samples, defining a common set of active H3K4me3-enriched genes and silent genes marked by H3K27me3 (H3K27me3 alone or bivalent) unique to primary MM cells, when compared to normal bone marrow plasma cells. Using this epigenome profile, we found increased silencing of H3K27me3 targets in MM patients at advanced stages of the disease, and the expression pattern of H3K27me3-marked genes correlated with poor patient survival. We also demonstrated that pharmacological inhibition of EZH2 had anti-myeloma effects in both MM cell lines and CD138+ MM patient cells. In addition, EZH2 inhibition decreased the global H3K27 methylation and induced apoptosis. Taken together, these data suggest an important role for the Polycomb repressive complex 2 (PRC2) in MM, and highlights the PRC2 component EZH2 as a potential therapeutic target in MM.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteínas do Grupo Polycomb/genética , Cromatina/metabolismo , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Perfilação da Expressão Gênica , Histonas/genética , Humanos , Lisina/metabolismo , Metilação , Terapia de Alvo Molecular , Mieloma Múltiplo/metabolismo , Proteínas do Grupo Polycomb/metabolismo
7.
Cancer Biol Ther ; 15(12): 1677-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25535899

RESUMO

Metastatic colon cancer has a 5-year survival of less than 10% despite the use of aggressive chemotherapeutic regimens. As signaling from epidermal growth factor receptor (EGFR) is often enhanced and epigenetic regulation is often altered in colon cancer, it is desirable to enhance the efficacy of EGFR-directed therapy by co-targeting an epigenetic pathway. We showed that the histone methyltransferase EZH2, which catalyzes methylation of histone H3 lysine 27 (H3K27), was upregulated in colon cancers in The Cancer Genome Atlas (TCGA) database. Since co-inhibition of both EGFR and EZH2 has not been studied in colon cancer, we examined the effects of co-inhibition of EGFR and EZH2 on 2 colon cancer cell lines, HT-29 and HCT-15. Co-inhibition of EZH2 and EGFR with the small molecules UNC1999 and gefitinib, led to a significant decrease in cell number and increased apoptosis compared to inhibition of either pathway alone, and similar results were noted after EZH2 shRNA knockdown. Moreover, co-inhibition of EZH2 and EGFR also significantly induced autophagy, indicating that autophagy may play a role in the observed synergy. Together, these findings suggest that inhibition of both EZH2 and EGFR serves as an effective method to increase the efficacy of EGFR inhibitors in suppressing colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Complexo Repressor Polycomb 2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste , Gefitinibe , Expressão Gênica , Humanos , Fosforilação/efeitos dos fármacos , Complexo Repressor Polycomb 2/genética , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA