Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38366802

RESUMO

Anti-coronavirus peptides (ACVPs) represent a relatively novel approach of inhibiting the adsorption and fusion of the virus with human cells. Several peptide-based inhibitors showed promise as potential therapeutic drug candidates. However, identifying such peptides in laboratory experiments is both costly and time consuming. Therefore, there is growing interest in using computational methods to predict ACVPs. Here, we describe a model for the prediction of ACVPs that is based on the combination of feature engineering (FE) optimization and deep representation learning. FEOpti-ACVP was pre-trained using two feature extraction frameworks. At the next step, several machine learning approaches were tested in to construct the final algorithm. The final version of FEOpti-ACVP outperformed existing methods used for ACVPs prediction and it has the potential to become a valuable tool in ACVP drug design. A user-friendly webserver of FEOpti-ACVP can be accessed at http://servers.aibiochem.net/soft/FEOpti-ACVP/.


Assuntos
Algoritmos , Peptídeos , Humanos , Sequência de Aminoácidos , Peptídeos/farmacologia , Aprendizado de Máquina
2.
Front Neurosci ; 17: 1197824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250391

RESUMO

Introduction: Golgi is one of the components of the inner membrane system in eukaryotic cells. Its main function is to send the proteins involved in the synthesis of endoplasmic reticulum to specific parts of cells or secrete them outside cells. It can be seen that Golgi is an important organelle for eukaryotic cells to synthesize proteins. Golgi disorders can cause various neurodegenerative and genetic diseases, and the accurate classification of Golgi proteins is helpful to develop corresponding therapeutic drugs. Methods: This paper proposed a novel Golgi proteins classification method, which is Golgi_DF with the deep forest algorithm. Firstly, the classified proteins method can be converted the vector features containing various information. Secondly, the synthetic minority oversampling technique (SMOTE) is utilized to deal with the classified samples. Next, the Light GBM method is utilized to feature reduction. Meanwhile, the features can be utilized in the penultimate dense layer. Therefore, the reconstructed features can be classified with the deep forest algorithm. Results: In Golgi_DF, this method can be utilized to select the important features and identify Golgi proteins. Experiments show that the well-performance than the other art-of-the state methods. Golgi_DF as a standalone tools, all its source codes publicly available at https://github.com/baowz12345/golgiDF. Discussion: Golgi_DF employed reconstructed feature to classify the Golgi proteins. Such method may achieve more available features among the UniRep features.

3.
Stat Med ; 37(3): 375-389, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29164637

RESUMO

Repeated measures are common in clinical trials and epidemiological studies. Designing studies with repeated measures requires reasonably accurate specifications of the variances and correlations to select an appropriate sample size. Underspecifying the variances leads to a sample size that is inadequate to detect a meaningful scientific difference, while overspecifying the variances results in an unnecessarily large sample size. Both lead to wasting resources and placing study participants in unwarranted risk. An internal pilot design allows sample size recalculation based on estimates of the nuisance parameters in the covariance matrix. We provide the theoretical results that account for the stochastic nature of the final sample size in a common class of linear mixed models. The results are useful for designing studies with repeated measures and balanced design. Simulations examine the impact of misspecification of the covariance matrix and demonstrate the accuracy of the approximations in controlling the type I error rate and achieving the target power. The proposed methods are applied to a longitudinal study assessing early antiretroviral therapy for youth living with HIV.


Assuntos
Modelos Lineares , Tamanho da Amostra , Ensaios Clínicos como Assunto , Simulação por Computador , Humanos , Estudos Longitudinais , Análise Multivariada , Projetos Piloto , Projetos de Pesquisa , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA