Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 396(2): 112321, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33045215

RESUMO

Cartilage acid protein 1 (CRTAC1) encodes a protein containing the Ca2+binding domain, which can promote apoptosis of human lens epithelial cells (HLECs) induced by ultraviolet B radiation. Exosomes secreted from adipose-derived stem cells (ASC-exo) have been used to treat many diseases, but the effect of ASC-exo on cataracts has not been established. We hypothesized that ASC-exo has a therapeutic effect on cataracts by regulating CRTAC1. We established the UVB-induced injured HLECs model to test the interactions between CRTAC1 and miR-10a-5p, and the effect on the Ca2+ level and reactive oxygen species (ROS) generation in apoptotic HLECs. We found that UVB significantly increased the level of CRTAC1 expression and induced HLEC apoptosis, while ASC-exo inhibited the induction of UVB and exosome inhibitor reduced the inhibition of ASC-exo. The qRT-PCR results showed that miR-10a-5p had a low level of expression in cataract lesions, whereas CRTAC1 was highly expressed. There was a negative correlation between the expression of CRTAC1 and miR-10a-5p. ASC-exo reversed UVB-inhibited miR-10a-5p expression and miR-10a-5p negatively regulated CRTAC1. In vitro data showed that miR-10a-5p reversed UVB-induced ROS, apoptosis, and the Ca2+ level in HLECs. Overexpression of CRTAC1 reversed the induction of ASC-exo in UVB-injured HLECs, and low expression of CRTAC1 reversed the induction of miR-10a-5p inhibitor. By upregulating the level of miR-10a-5p expression and downregulating the level of CRTAC1 expression, exosomes from ASCs attenuated UVB-induced apoptosis, ROS generation, and the Ca2+ level in HLECs. Our research provides novel insight into the treatment methods and associated mechanisms underlying cataracts.


Assuntos
Apoptose/efeitos da radiação , Cálcio/metabolismo , Células Epiteliais/metabolismo , Exossomos/metabolismo , Cristalino/citologia , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/metabolismo , Raios Ultravioleta , Tecido Adiposo/citologia , Proteínas de Ligação ao Cálcio/metabolismo , Catarata/genética , Catarata/patologia , Células Epiteliais/efeitos da radiação , Exossomos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Células-Tronco/efeitos da radiação
2.
Braz. j. med. biol. res ; 51(8): e6896, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951743

RESUMO

Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.


Assuntos
Humanos , Queratinócitos/metabolismo , Apoptose/fisiologia , eIF-2 Quinase/metabolismo , Fator de Indução de Apoptose/metabolismo , RNA Longo não Codificante/metabolismo , Raios Ultravioleta/efeitos adversos , Expressão Gênica , Queratinócitos/efeitos da radiação , Regulação para Cima , Sobrevivência Celular/fisiologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose/efeitos da radiação , Fosfatidilinositol 3-Quinases/metabolismo , Inflamação/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA