Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139525

RESUMO

Contactless continuous blood pressure (BP) monitoring is of great significance for daily healthcare. Radar-based continuous monitoring methods typically extract time-domain features manually such as pulse transit time (PTT) to calculate the BP. However, breathing and slight body movements usually distort the features extracted from pulse-wave signals, especially in long-term continuous monitoring, and manually extracted features may have limited performance for BP estimation. This article proposes a Transformer network for Radar-based Contactless Continuous Blood Pressure monitoring (TRCCBP). A heartbeat signal-guided single-beat pulse wave extraction method is designed to obtain pure pulse-wave signals. A transformer network-based blood pressure estimation network is proposed to estimate BP, which utilizes convolutional layers with different scales, a gated recurrent unit (GRU) to capture time-dependence in continuous radar signal and multi-head attention modules to capture deep temporal domain characteristics. A radar signal dataset captured in an indoor environment containing 31 persons and a real medical situation containing five persons is set up to evaluate the performance of TRCCBP. Compared with the state-of-the-art method, the average accuracy of diastolic blood pressure (DBP) and systolic blood pressure (SBP) is 4.49 mmHg and 4.73 mmHg, improved by 12.36 mmHg and 8.80 mmHg, respectively. The proposed TRCCBP source codes and radar signal dataset have been made open-source online for further research.


Assuntos
Fotopletismografia , Radar , Pressão Sanguínea/fisiologia , Fotopletismografia/métodos , Determinação da Pressão Arterial/métodos , Monitorização Fisiológica/métodos , Análise de Onda de Pulso/métodos
2.
Sensors (Basel) ; 23(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765721

RESUMO

Unobtrusive monitoring of children's heart rate (HR) and respiratory rate (RR) can be valuable for promoting the early detection of potential health issues, improving communication with healthcare providers and reducing unnecessary hospital visits. A promising solution for wireless vital sign monitoring is radar technology. This paper presents a novel approach for the simultaneous estimation of children's RR and HR utilizing ultra-wideband (UWB) radar using a deep transfer learning algorithm in a cohort of 55 children. The HR and RR are calculated by processing radar signals via spectrogram from time epochs of 10 s (25 sample length of hamming window with 90% overlap) and then transforming the resultant representation into 2-dimensional images. These images were fed into a pre-trained Visual Geometry Group-16 (VGG-16) model (trained on ImageNet dataset), with weights of five added layers fine-tuned using the proposed data. The prediction on the test data achieved a mean absolute error (MAE) of 7.3 beats per minute (BPM < 6.5% of average HR) and 2.63 breaths per minute (BPM < 7% of average RR). We also achieved a significant Pearson's correlation of 77% and 81% between true and extracted for HR and RR, respectively. HR and RR samples are extracted every 10 s.

3.
Micromachines (Basel) ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512790

RESUMO

In recent years, biometric radar has gained increasing attention in the field of non-touch vital sign monitoring due to its high accuracy and strong ability to detect fine-grained movements. However, most current research on biometric radar can only achieve heart rate or respiration rate monitoring in static environments, which have strict monitoring requirements and single monitoring parameters. Moreover, most studies have not applied the collected data despite their significant potential for applications. In this paper, we introduce a non-touch motion-robust vital sign monitoring system via ultra-wideband (UWB) radar based on deep learning. Nmr-VSM not only enables multi-dimensional vital sign monitoring under human motion environments but also implements cardiac anomaly detection. The design of Nmr-VSM includes three key components. Firstly, we design a UWB radar that can perform multi-dimensional vital sign monitoring, including heart rate, respiratory rate, distance, and motion status. Secondly, we collect real experimental data and analyze the impact of eight factors, such as motion status and distance, on heart rate monitoring. We then propose a deep neural network (DNN)-based heart rate data correction model that achieves high robustness in motion environments. Finally, we model the heart rate variability (HRV) of the human body and propose a convolutional neural network (CNN)-based anomaly detection model that achieves low-latency detection of heart diseases, such as ventricular tachycardia and ventricular fibrillation. Experimental results in a real environment demonstrate that Nmr-VSM can not only accurately monitor heart rate but also achieve anomaly detection with low latency.

4.
Sensors (Basel) ; 23(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37420798

RESUMO

Radar-based personal identification and fall detection have received considerable attention in smart healthcare scenarios. Deep learning algorithms have been introduced to improve the performance of non-contact radar sensing applications. However, the original Transformer network is not suitable for multi-task radar-based applications to effectively extract temporal features from time-series radar signals. This article proposes the Multi-task Learning Radar Transformer (MLRT): a personal Identification and fall detection network based on IR-UWB radar. The proposed MLRT utilizes the attention mechanism of Transformer as its core to automatically extract features for personal identification and fall detection from radar time-series signals. Multi-task learning is applied to exploit the correlation between the personal identification task and the fall detection task, enhancing the performance of discrimination for both tasks. In order to suppress the impact of noise and interference, a signal processing approach is employed including DC removal and bandpass filtering, followed by clutter suppression using a RA method and Kalman filter-based trajectory estimation. An indoor radar signal dataset is generated with 11 persons under one IR-UWB radar, and the performance of MLRT is evaluated using this dataset. The measurement results show that the accuracy of MLRT improves by 8.5% and 3.6% for personal identification and fall detection, respectively, compared to state-of-the-art algorithms. The indoor radar signal dataset and the proposed MLRT source code are publicly available.


Assuntos
Acidentes por Quedas , Radar , Acidentes por Quedas/prevenção & controle , Processamento de Sinais Assistido por Computador , Algoritmos , Software
5.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36991833

RESUMO

Vital signs provide important biometric information for managing health and disease, and it is important to monitor them for a long time in a daily home environment. To this end, we developed and evaluated a deep learning framework that estimates the respiration rate (RR) and heart rate (HR) in real time from long-term data measured during sleep using a contactless impulse radio ultrawide-band (IR-UWB) radar. The clutter is removed from the measured radar signal, and the position of the subject is detected using the standard deviation of each radar signal channel. The 1D signal of the selected UWB channel index and the 2D signal applied with the continuous wavelet transform are entered as inputs into the convolutional neural-network-based model that then estimates RR and HR. From 30 recordings measured during night-time sleep, 10 were used for training, 5 for validation, and 15 for testing. The average mean absolute errors for RR and HR were 2.67 and 4.78, respectively. The performance of the proposed model was confirmed for long-term data, including static and dynamic conditions, and it is expected to be used for health management through vital-sign monitoring in the home environment.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Sinais Vitais , Frequência Cardíaca , Redes Neurais de Computação , Sono , Monitorização Fisiológica , Algoritmos
6.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358714

RESUMO

Thermal ablation is a well-known method used in interventional radiology to treat cancer. The treatment success is closely related to the exact catheter location in the treated area. Current navigation methods are based mostly on ultrasound or computed tomography. This work explores the possibility of tracking the catheter position during ablation treatment of hepatocellular carcinomas (HCC) using an ultra-wideband (UWB) antenna array and microwave radar imaging based on the "Delay and Sum" (DAS) algorithm. The feasibility was first numerically studied on a simple homogeneous liver model. A heterogeneous anthropomorphic 3D model of the treated region consisting of the main organs within the treated area was then used. Various standard radiofrequency ablation (RFA) catheters were placed virtually in the heterogeneous model. The location and orientation of the antenna elements of the developed imaging system and the applied frequency band were studied. Subsequently, an experimental setup consisting of a 3D printed homogeneous anthropomorphic model, eight UWB dipole antennas, and catheters was created and used in a series of measurements. The average accuracy determining the catheter position from simulated and experimental data was 3.88 ± 0.19 and 6.13 ± 0.66 mm, which are close to the accuracy of clinical navigation systems.

7.
Front Pediatr ; 10: 731534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313883

RESUMO

In the untact COVID-19 era, the feasibility of a noncontact, impulse-radio ultrawideband (IR-UWB) radar sensor has important medical implications. Premature birth is a major risk factor for brain injury and developmental delay; therefore, early intervention is crucial for potentially achieving better developmental outcomes. Early detection and screening tests in infancy are limited to the quantification of differences between normal and spastic movements. This study investigated the quantified asymmetry in the general movements of an infant with hydrocephalus and proposes IR-UWB radar as a novel, early screening tool for developmental delay. To support this state-of-the-art technology, data from actigraphy and video camcorder recordings were adopted simultaneously to compare relevant time series as the infant grew. The data from the three different methods were highly concordant; specifically, the ρz values comparing radar and actigraphy, which served as the reference for measuring movements, showed excellent agreement, with values of 0.66 on the left and 0.56 on the right. The total amount of movement measured by radar over time increased overall; movements were almost dominant on the left at first (75.2% of total movements), but following shunt surgery, the frequency of movement on both sides was similar (54.8% of total movements). As the hydrocephalus improved, the lateralization of movement on radar began to coincide with the clinical features. These results support the important complementary role of this radar system in predicting motor disorders very early in life.

8.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015877

RESUMO

With the vigorous development of ubiquitous sensing technology, an increasing number of scholars pay attention to non-contact vital signs (e.g., Respiration Rate (RR) and Heart Rate (HR)) detection for physical health. Since Impulse Radio Ultra-Wide Band (IR-UWB) technology has good characteristics, such as non-invasive, high penetration, accurate ranging, low power, and low cost, it makes the technology more suitable for non-contact vital signs detection. Therefore, a non-contact multi-human vital signs detection method based on IR-UWB radar is proposed in this paper. By using this technique, the realm of multi-target detection is opened up to even more targets for subjects than the more conventional single target. We used an optimized algorithm CIR-SS based on the channel impulse response (CIR) smoothing spline method to solve the problem that existing algorithms cannot effectively separate and extract respiratory and heartbeat signals. Also in our study, the effectiveness of the algorithm was analyzed using the Bland-Altman consistency analysis statistical method with the algorithm's respiratory and heart rate estimation errors of 5.14% and 4.87%, respectively, indicating a high accuracy and precision. The experimental results showed that our proposed method provides a highly accurate, easy-to-implement, and highly robust solution in the field of non-contact multi-person vital signs detection.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca , Humanos , Taxa Respiratória , Sinais Vitais
9.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890910

RESUMO

The paper aims to propose a sequence of steps that will allow multi-person tracking with a single UWB radar equipped with the minimal antenna array needed for trilateration. Its localization accuracy is admittedly limited, but on the other hand, thoughtfully chosen placement of antennas can increase the detectability of several humans moving in their immediate vicinity and additionally decrease the computational complexity of the signal processing methods. It is shown that the UWB radar measuring with high rate and fine range resolution in conjunction with properly tuned processing parameters can continually track people even in the case when their radar echoes are crossing or merging. Emphasis is given to the simplified method of the time-of-arrival (TOA) estimation and association and the novel method needed for antenna height compensation. The performance of the proposed human tracking framework is evaluated for the experimental scenario with three people moving closely in a small room. A quantitative analysis of the estimated target tracks confirms the benefits of suggested high antenna placement and application of new signal processing methods in the form of decreasing the mean localization error and increasing the frequency of correct target position estimations.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Humanos
10.
Sensors (Basel) ; 22(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890928

RESUMO

Ultra-wideband radar application for sleep breathing monitoring is hampered by the difficulty of obtaining breathing signals for non-stationary subjects. This occurs due to imprecise signal clutter removal and poor body movement removal algorithms for extracting accurate breathing signals. Therefore, this paper proposed a Sleep Breathing Detection Algorithm (SBDA) to address this challenge. First, SBDA introduces the combination of variance feature with Discrete Wavelet Transform (DWT) to tackle the issue of clutter signals. This method used Daubechies wavelets with five levels of decomposition to satisfy the signal-to-noise ratio in the signal. Second, SBDA implements a curve fit based sinusoidal pattern algorithm for detecting periodic motion. The measurement was taken by comparing the R-square value to differentiate between chest and body movements. Last but not least, SBDA applied the Ensemble Empirical Mode Decomposition (EEMD) method for extracting breathing signals before transforming the signal to the frequency domain using Fast Fourier Transform (FFT) to obtain breathing rate. The analysis was conducted on 15 subjects with normal and abnormal ratings for sleep monitoring. All results were compared with two existing methods obtained from previous literature with Polysomnography (PSG) devices. The result found that SBDA effectively monitors breathing using IR-UWB as it has the lowest average percentage error with only 6.12% compared to the other two existing methods from past research implemented in this dataset.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca , Humanos , Polissonografia , Sono
11.
J Sleep Res ; 31(6): e13687, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35794011

RESUMO

This work aimed to evaluate if a contact-free radar sensor can be used to observe ultradian patterns in sleep physiology, by way of a data processing tool known as Locomotor Inactivity During Sleep (LIDS). LIDS was designed as a simple transformation of actigraphy recordings of wrist movement, meant to emphasise and enhance the contrast between movement and non-movement and to reveal patterns of low residual activity during sleep that correlate with ultradian REM/NREM cycles. We adapted the LIDS transformation for a radar that detects body movements without direct contact with the subject and applied it to a dataset of simultaneous recordings with polysomnography, actigraphy, and radar from healthy young adults (n = 12, four nights of polysomnography per participant). Radar and actigraphy-derived LIDS signals were highly correlated with each other (r > 0.84), and the LIDS signals were highly correlated with reduced-resolution polysomnographic hypnograms (rradars >0.80, ractigraph >0.76). Single-harmonic cosine models were fitted to LIDS signals and hypnograms; significant differences were not found between their amplitude, period, and phase parameters. Mixed model analysis revealed similar slopes of decline per cycle for radar-LIDS, actigraphy-LIDS, and hypnograms. Our results indicate that the LIDS technique can be adapted to work with contact-free radar measurements of body movement; it may also be generalisable to data from other body movement sensors. This novel metric could aid in improving sleep monitoring in clinical and real-life settings, by providing a simple and transparent way to study ultradian dynamics of sleep using nothing more than easily obtainable movement data.


Assuntos
Radar , Sono , Adulto Jovem , Humanos , Sono/fisiologia , Polissonografia/métodos , Actigrafia/métodos , Movimento/fisiologia
12.
Sensors (Basel) ; 22(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35336458

RESUMO

The goal of this paper is to evaluate the potential of a low-cost, ultra-wideband radar system for detecting and monitoring respiratory motion during radiation therapy treatment delivery. Radar signals from breathing motion patterns simulated using a respiratory motion phantom were captured during volumetric modulated arc therapy (VMAT) delivery. Gantry motion causes strong interference affecting the quality of the extracted respiration motion signal. We developed an artificial neural network (ANN) model for recovering the breathing motion patterns. Next, automated classification into four classes of breathing amplitudes is performed, including no breathing, breath hold, free breathing and deep inspiration. Breathing motion patterns extracted from the radar signal are in excellent agreement with the reference data recorded by the respiratory motion phantom. The classification accuracy of simulated deep inspiration breath hold breathing was 94% under the worst case interference from gantry motion and linac operation. Ultra-wideband radar systems can achieve accurate breathing rate estimation in real-time during dynamic radiation delivery. This technology serves as a viable alternative to motion detection and respiratory gating systems based on surface detection, and is well-suited to dynamic radiation treatment techniques. Novelties of this work include detection of the breathing signal using radar during strong interference from simultaneous gantry motion, and using ANN to perform adaptive signal processing to recover breathing signal from large interference signals in real time.


Assuntos
Radioterapia de Intensidade Modulada , Movimento (Física) , Radar , Radioterapia de Intensidade Modulada/métodos , Respiração , Taxa Respiratória
13.
Sensors (Basel) ; 21(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34450945

RESUMO

Vital signs monitoring in physical activity (PA) is of great significance in daily healthcare. Impulse Radio Ultra-WideBand (IR-UWB) radar provides a contactless vital signs detection approach with advantages in range resolution and penetration. Several researches have verified the feasibility of IR-UWB radar monitoring when the target keeps still. However, various body movements are induced by PA, which lead to severe signal distortion and interfere vital signs extraction. To address this challenge, a novel joint chest-abdomen cardiopulmonary signal estimation approach is proposed to detect breath and heartbeat simultaneously using IR-UWB radars. The movements of target chest and abdomen are detected by two IR-UWB radars, respectively. Considering the signal overlapping of vital signs and body motion artifacts, Empirical Wavelet Transform (EWT) is applied on received radar signals to remove clutter and mitigate movement interference. Moreover, improved EWT with frequency segmentation refinement is applied on each radar to decompose vital signals of target chest and abdomen to vital sign-related sub-signals, respectively. After that, based on the thoracoabdominal movement correlation, cross-correlation functions are calculated among chest and abdomen sub-signals to estimate breath and heartbeat. The experiments are conducted under three kinds of PA situations and two general body movements, the results of which indicate the effectiveness and superiority of the proposed approach.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Exercício Físico , Frequência Cardíaca , Sinais Vitais
14.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916649

RESUMO

A common problem in through-wall radar is reflected signals much attenuated by wall and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown object time series. This paper aims to extract the object time series from a noisy receiving signal of through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regularization. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a reliable solution and more accuracy, compared with convex regularizations. An iterative technique for this deconvolution problem is derived by the majorization-minimization (MM) approach so that the problem can be solved efficiently. In the various experiments, sparse deconvolution with the arctangent regularization can identify human positions from the noisy received signals of through- wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to provide a more accurate detection of a human position behind a concrete wall.


Assuntos
Radar , Projetos de Pesquisa , Humanos , Sujeitos da Pesquisa
15.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494509

RESUMO

Previously, studies reported that falls analysis is possible in the elderly, when using wearable sensors. However, these devices cannot be worn daily, as they need to be removed and recharged from time-to-time due to their energy consumption, data transfer, attachment to the body, etc. This study proposes to introduce a radar sensor, an unobtrusive technology, for risk of falling analysis and combine its performance with an instrumented insole. We evaluated our methods on datasets acquired during a Timed Up and Go (TUG) test where a stride length (SL) was computed by the insole using three approaches. Only the SL from the third approach was not statistically significant (p = 0.2083 > 0.05) compared to the one provided by the radar, revealing the importance of a sensor location on human body. While reducing the number of force sensors (FSR), the risk scores using an insole containing three FSRs and y-axis of acceleration were not significantly different (p > 0.05) compared to the combination of a single radar and two FSRs. We concluded that contactless TUG testing is feasible, and by supplementing the instrumented insole to the radar, more precise information could be available for the professionals to make accurate decision.


Assuntos
Acidentes por Quedas , Radar , Sapatos , Idoso , Humanos , Equilíbrio Postural , Estudos de Tempo e Movimento , Dispositivos Eletrônicos Vestíveis
16.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477476

RESUMO

In this work we propose a method of in situ clutter deconvolution and modeling using experimentally obtained UWB radar data. The obtained clutter models are then used for random sequence encoding of radar-communication (radarcom) signals to achieve clutter-masked transmissions and improve communication security. We present the results of clutter modeling from the laboratory data obtained with the software-defined radar system. We then show that such clutter-masked radarcom signals generated using the local clutter model are highly likely to be interpreted as just clutter returns by an unauthorized interceptor. We also present the results of communication and radar performance of these radarcom signals and contrast them with those obtained using a linear frequency modulated waveform. It is shown that the proposed radarcom design method has high potential to achieve secure communications in adversarial conditions, while simultaneously addressing radar sensing needs.

17.
Sensors (Basel) ; 21(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450883

RESUMO

A calibration method for a high-resolution hybrid MIMO turntable radar imaging system is presented. A line of small metal spheres is employed as a test pattern in the calibration process to measure the position shift caused by undesired antenna effects. The unwanted effects in the antenna near-field responses are analysed, modelled and significantly mitigated based on the symmetry and differences in the responses of the MIMO configuration.

18.
Sensors (Basel) ; 22(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009628

RESUMO

Vital signs such as heart rate and respiration rate are among the most important physiological signals for health monitoring and medical applications. Impulse radio (IR) ultra-wideband (UWB) radar becomes one of the essential sensors in non-contact vital signs detection. The heart pulse wave is easily corrupted by noise and respiration activity since the heartbeat signal has less power compared with the breathing signal and its harmonics. In this paper, a signal processing technique for a UWB radar system was developed to detect the heart rate and respiration rate. There are four main stages of signal processing: (1) clutter removal to reduce the static random noise from the environment; (2) independent component analysis (ICA) to do dimension reduction and remove noise; (3) using low-pass and high-pass filters to eliminate the out of band noise; (4) modified covariance method for spectrum estimation. Furthermore, higher harmonics of heart rate were used to estimate heart rate and minimize respiration interference. The experiments in this article contain different scenarios including bed angle, body position, as well as interference from the visitor near the bed and away from the bed. The results were compared with the ECG sensor and respiration belt. The average mean absolute error (MAE) of heart rate results is 1.32 for the proposed algorithm.


Assuntos
Radar , Taxa Respiratória , Algoritmos , Frequência Cardíaca , Monitorização Fisiológica , Respiração , Processamento de Sinais Assistido por Computador , Sinais Vitais
19.
Front Pediatr ; 9: 782623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993163

RESUMO

Background: The gold standard for sleep monitoring, polysomnography (PSG), is too obtrusive and limited for practical use with tiny infants or in neonatal intensive care unit (NICU) settings. The ability of impulse-radio ultrawideband (IR-UWB) radar, a non-contact sensing technology, to assess vital signs and fine movement asymmetry in neonates was recently demonstrated. The purpose of this study was to investigate the possibility of quantitatively distinguishing and measuring sleep/wake states in neonates using IR-UWB radar and to compare its accuracy with behavioral observation-based sleep/wake analyses using video recordings. Methods: One preterm and three term neonates in the NICU were enrolled, and voluntary movements and vital signs were measured by radar at ages ranging from 2 to 27 days. Data from a video camcorder, amplitude-integrated electroencephalography (aEEG), and actigraphy were simultaneously recorded for reference. Radar signals were processed using a sleep/wake decision algorithm integrated with breathing signals and movement features. Results: The average recording time for the analysis was 13.0 (7.0-20.5) h across neonates. Compared with video analyses, the sleep/wake decision algorithm for neonates correctly classified 72.2% of sleep epochs and 80.6% of wake epochs and achieved a final Cohen's kappa coefficient of 0.49 (0.41-0.59) and an overall accuracy of 75.2%. Conclusions: IR-UWB radar can provide considerable accuracy regarding sleep/wake decisions in neonates, and although current performance is not yet sufficient, this study demonstrated the feasibility of its possible use in the NICU for the first time. This unobtrusive, non-contact radar technology is a promising method for monitoring sleep/wake states with vital signs in neonates.

20.
Sensors (Basel) ; 20(23)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260403

RESUMO

This research proposes a through-wall S-band ultra-wideband (UWB) switched-antenna-array radar scheme for detection of stationary human subjects from respiration. The proposed antenna-array radar consists of one transmitting (Tx) and five receiving antennas (Rx). The Tx and Rx antennas are of Vivaldi type with high antenna gain (10 dBi) and narrow-angle directivity. The S-band frequency (2-4 GHz) is capable of penetrating non-metal solid objects and detecting human respiration behind a solid wall. Under the proposed radar scheme, the reflected signals are algorithmically preprocessed and filtered to remove unwanted signals, and 3D signal array is converted into 2D array using statistical variance. The images are reconstructed using back-projection algorithm prior to Sinc-filtered refinement. To validate the detection performance of the through-wall UWB radar scheme, simulations are carried out and experiments performed with single and multiple real stationary human subjects and a mannequin behind the concrete wall. Although the proposed method is an odd concept, the interest of this paper is applying the 1-Tx/5-Rx UWB switched-antenna array radar with the proposed method that is capable of distinguishing between the human subjects and the mannequin behind the concrete wall.


Assuntos
Algoritmos , Radar , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA