Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1871(1): 167533, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368714

RESUMO

Endoplasmic reticulum-associated degradation (ERAD) serves as a crucial quality and quantity control system that removes misfolded or unassembled proteins from the Endoplasmic Reticulum (ER) through the cytoplasmic ubiquitin-proteasome system (UPS), which is critical for cell fate decision. ER stress arises when misfolded proteins accumulated within the ER lumen, potentially leading to cell death via proapoptotic unfolded protein response (UPR). UFD1 in associated with VCP-Npl4, is recognized as a key regulator of protein homeostasis in ERAD. However, the factors that control VCP complex assembly remain unclear. The study elucidates the function of Trim21, an E3 ubiquitin ligase, through its interaction with UFD1, facilitating K27-linkage ubiquitination of UFD1 and inhibiting its incorporation into the VCP complex. This results in the suppression of ERAD substrates degradation and the activation of a proapoptotic unfolded protein response in cancer cells. Additionally, Trim21 over-expression enhances ER stress response and promotes apoptosis upon expose to the ER inducer Tunicamycin. Notably, elevated Trim21 expression correlates with improved overall survival in various tumor types. Overall, the findings highlight the critical role of Trim21 in regulating ERAD progression and cell fate determination in cancer cells through modulation of VCP/Npl4/UFD1 complex assembly.

2.
Biol Open ; 13(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526189

RESUMO

CENP-A determines the identity of the centromere. Because the position and size of the centromere and its number per chromosome must be maintained, the distribution of CENP-A is strictly regulated. In this study, we have aimed to understand mechanisms to regulate the distribution of CENP-A (Cnp1SP) in fission yeast. A mutant of the ufd1+ gene (ufd1-73) encoding a cofactor of Cdc48 ATPase is sensitive to Cnp1 expressed at a high level and allows mislocalization of Cnp1. The level of Cnp1 in centromeric chromatin is increased in the ufd1-73 mutant even when Cnp1 is expressed at a normal level. A preexisting mutant of the cdc48+ gene (cdc48-353) phenocopies the ufd1-73 mutant. We have also shown that Cdc48 and Ufd1 proteins interact physically with centromeric chromatin. Finally, Cdc48 ATPase with Ufd1 artificially recruited to the centromere of a mini-chromosome (Ch16) induce a loss of Cnp1 from Ch16, leading to an increased rate of chromosome loss. It appears that Cdc48 ATPase, together with its cofactor Ufd1 remove excess Cnp1 from chromatin, likely in a direct manner. This mechanism may play a role in centromere disassembly, a process to eliminate Cnp1 to inactivate the kinetochore function during development, differentiation, and stress response.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cromatina/genética , Cromatina/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/genética , Centrômero/metabolismo , Adenosina Trifosfatases/metabolismo , Extratos Vegetais/metabolismo
3.
Structure ; 31(7): 764-779.e8, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311459

RESUMO

Cdc48 (VCP/p97) is a major AAA-ATPase involved in protein quality control, along with its canonical cofactors Ufd1 and Npl4 (UN). Here, we present novel structural insights into the interactions within the Cdc48-Npl4-Ufd1 ternary complex. Using integrative modeling, we combine subunit structures with crosslinking mass spectrometry (XL-MS) to map the interaction between Npl4 and Ufd1, alone and in complex with Cdc48. We describe the stabilization of the UN assembly upon binding with the N-terminal-domain (NTD) of Cdc48 and identify a highly conserved cysteine, C115, at the Cdc48-Npl4-binding interface which is central to the stability of the Cdc48-Npl4-Ufd1 complex. Mutation of Cys115 to serine disrupts the interaction between Cdc48-NTD and Npl4-Ufd1 and leads to a moderate decrease in cellular growth and protein quality control in yeast. Our results provide structural insight into the architecture of the Cdc48-Npl4-Ufd1 complex as well as its in vivo implications.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/química , Saccharomyces cerevisiae/metabolismo , Ligação Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Mol Cell ; 83(5): 759-769.e7, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736315

RESUMO

The AAA+ ATPase Cdc48 utilizes the cofactor Ufd1/Npl4 to bind and thread polyubiquitinated substrates for their extraction from complexes or membranes and often for subsequent proteasomal degradation. Previous studies indicated that Cdc48 engages polyubiquitin chains through the Npl4-mediated unfolding of an initiator ubiquitin; yet, the underlying principles remain largely unknown. Using FRET-based assays, we revealed the mechanisms and kinetics of ubiquitin unfolding, insertion into the ATPase, and unfolding of the ubiquitin-attached substrate. We found that Cdc48 uses Ufd1's UT3 domain to bind a K48-linked ubiquitin on the initiator's proximal side of the chain, thereby directing the initiator toward rapid unfolding by Npl4 and engagement by Cdc48. Ubiquitins on the initiator's distal side increase substrate affinity and facilitate unfolding but impede substrate release from Cdc48-Ufd1/Npl4 in the absence of additional cofactors. Our findings explain how Cdc48-UN efficiently processes substrates with K48-linked chains of 4-6 ubiquitins, which represent most cellular polyubiquitinated proteins.


Assuntos
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
Structure ; 30(11): 1530-1537.e3, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36087575

RESUMO

The heterodimer of human ubiquitin fusion degradation 1 (hUfd1) and human nuclear protein localization 4 (hNpl4) is a major cofactor of human p97 adenosine triphosphatase (ATPase). The p97-Ufd1-Npl4 complex translocates the ubiquitin-conjugated proteins from the endoplasmic reticulum membrane to the cytoplasm. Ubiquitinated proteins are then degraded by the proteasome. The structures of Npl4 and Ufd1-Npl4 (UN) complex in Saccharomyces cerevisiae have been recently reported; however, the structures of hNpl4 and the human UN complex remain unknown. Here, we report the crystal structures of the human UN complex at a resolution of 2.7 Å and hNpl4 at a resolution of 3.0 Å. We also present atomic details and characterization of the human UN complex. Crystallographic studies and site-directed mutagenesis of the hUfd1 residues involved in the interaction with hNpl4 revealed the atomic details of the two proteins.


Assuntos
Adenosina Trifosfatases , Proteínas de Saccharomyces cerevisiae , Humanos , Ligação Proteica , Adenosina Trifosfatases/química , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563018

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases , Proteínas Relacionadas à Autofagia , Distonia , Membrana Nuclear , Proteínas Nucleares , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Estruturas da Membrana Celular/metabolismo , Distonia/genética , Distonia/metabolismo , Distonia Muscular Deformante , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo
7.
Cell Rep ; 38(12): 110554, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320724

RESUMO

Cdc48 (p97/VCP) is a AAA-ATPase that can extract ubiquitinated proteins from their binding partners and can cooperate with the proteasome for their degradation. A fission yeast cdc48 mutant (cdc48-353) shows low levels of the cohesin protease, separase, and pronounced chromosome segregation defects in mitosis. Separase initiates chromosome segregation when its binding partner securin is ubiquitinated and degraded. The low separase levels in the cdc48-353 mutant have been attributed to a failure to extract ubiquitinated securin from separase, resulting in co-degradation of separase along with securin. If true, Cdc48 would be important in mitosis. In contrast, we show here that low separase levels in the cdc48-353 mutant are independent of mitosis. Moreover, we find no evidence of enhanced separase degradation in the mutant. Instead, we suggest that the cdc48-353 mutant uncovers specific requirements for separase translation. Our results highlight a need to better understand how this key mitotic enzyme is synthesized.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteína com Valosina/metabolismo , Mitose , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Securina/genética , Securina/metabolismo , Separase/genética , Separase/metabolismo
8.
Mol Cell ; 82(3): 570-584.e8, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34951965

RESUMO

The hexameric Cdc48 ATPase (p97 or VCP in mammals) cooperates with its cofactor Ufd1/Npl4 to extract polyubiquitinated proteins from membranes or macromolecular complexes for degradation by the proteasome. Here, we clarify how the Cdc48 complex unfolds its substrates and translocates polypeptides with branchpoints. The Cdc48 complex recognizes primarily polyubiquitin chains rather than the attached substrate. Cdc48 and Ufd1/Npl4 cooperatively bind the polyubiquitin chain, resulting in the unfolding of one ubiquitin molecule (initiator). Next, the ATPase pulls on the initiator ubiquitin and moves all ubiquitin molecules linked to its C terminus through the central pore of the hexameric double ring, causing transient ubiquitin unfolding. When the ATPase reaches the isopeptide bond of the substrate, it can translocate and unfold both N- and C-terminal segments. Ubiquitins linked to the branchpoint of the initiator dissociate from Ufd1/Npl4 and move outside the central pore, resulting in the release of unfolded, polyubiquitinated substrate from Cdc48.


Assuntos
Poliubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Ubiquitinadas/metabolismo , Proteína com Valosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico , Desdobramento de Proteína , Proteólise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Ubiquitinadas/genética , Ubiquitinação , Proteína com Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Virus Res ; 283: 197974, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32289342

RESUMO

Valosin-containing protein (VCP) plays roles in various cellular activities. Recently, Enterovirus A71 (EVA71) infection was found to hijack the VCP protein. However, the mechanism by which VCP participates in the EVA71 life cycle remains unclear. Using chemical inhibitor, RNA interference and dominant negative mutant, we confirmed that the VCP and its ATPase activity were critical for EVA71 infection. To identify the factors downstream of VCP in enterovirus infection, 31 known VCP-cofactors were screened in the siRNA knockdown experiments. The results showed that UFD1 (ubiquitin recognition factor in ER associated degradation 1), but not NPL4 (NPL4 homolog, ubiquitin recognition factor), played critical roles in infections by EVA71. UFD1 knockdown suppressed the activity of EVA71 pseudovirus (causing single round infection) while it did not affect the viral replication in replicon RNA transfection assays. In addition, knockdown of VCP and UFD1 reduced viral infections by multiple human Enterovirus A serotypes. Mechanistically, we found that knockdown of UFD1 significantly decreased the binding and the subsequent entry of EVA71 to host cells through modulating the levels of nucleolin protein, a coreceptor of EVA71. Together, these data reveal novel roles of VCP and its cofactor UFD1 in the virus entry by EVA71.


Assuntos
Enterovirus/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Proteína com Valosina/genética , Internalização do Vírus , Linhagem Celular Tumoral , Infecções por Enterovirus/virologia , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo , Proteína com Valosina/metabolismo , Replicação Viral , Nucleolina
10.
FASEB J ; 34(4): 5193-5207, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067276

RESUMO

One of the critical regulatory mechanisms for cell cycle progression is the timely degradation of CDK inhibitors, including p21Cip1 and p27Kip1 . VCP/p97, an AAA-ATPase, is reported to be overexpressed in many types of cancers. Here, we found that treatment of MCF-7 human breast cancer cells with DBeQ, a VCP inhibitor, or VCP knockdown in MCF-7 cells arrested cells at G1 phase, accompanied with the blockage of both p21 and p27 degradation. Whereas, double knockdown of p21 and p27 in MCF-7 cells rendered cells refractory to DBeQ-induced G1 arrest. Moreover, inhibition or knockdown of VCP or UFD1, one of VCP's co-factors, in MCF-7, NIH3T3, or HEK293T cells blocked the nuclear export of p27 during earlier G1 phase after mitogen stimulation. We also identified the nuclear localization sequence (NLS) of VCP, and found that adding back wild-type VCP, not the NLS-deleted VCP mutant, restored the nuclear export and degradation of p27 in VCP knockout MCF-7 cells. Importantly, we found that VCP inhibition sensitized breast cancer cells to the treatment of several anticancer therapeutics both in vitro and in vivo. Taken together, our study not only uncovers the mechanisms underlying VCP-mediated cell proliferation control but also provides potential therapeutic option for cancer treatment.


Assuntos
Transporte Ativo do Núcleo Celular , Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fase G1 , Fase S , Proteína com Valosina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteólise , Células Tumorais Cultivadas , Proteína com Valosina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Autophagy ; 16(1): 190-192, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31718417

RESUMO

VCP (valosin containing protein) recognizes a wide variety of substrates and mediates their degradation via the ubiquitin-proteasome system and macroautophagy/autophagy. The substrate repertoire of VCP, however, is not fully understood. In our recent study, we found that Drosophila TER94/VCP mediates autophagic degradation of an Argonaute subfamily protein (AGO1), which binds microRNAs (miRNAs) and silences the expression of thousands of target genes. In the absence of TER94/VCP, miRNA-mediated gene silencing is globally impaired. Our findings reveal an unexpected connection between VCP and AGO, which may dramatically expand the biological significance of VCP.


Assuntos
Autofagia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina/metabolismo , Animais , Proteínas Argonautas/genética , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
12.
Structure ; 27(12): 1820-1829.e4, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31623962

RESUMO

Valosin-containing protein (VCP)/p97 is an essential ATP-dependent protein unfoldase. Dominant mutations in p97 cause multisystem proteinopathy (MSP), a disease affecting the brain, muscle, and bone. Despite the identification of numerous pathways that are perturbed in MSP, the molecular-level defects of these p97 mutants are not completely understood. Here, we use biochemistry and cryoelectron microscopy to explore the effects of MSP mutations on the unfoldase activity of p97 in complex with its substrate adaptor NPLOC4⋅UFD1L (UN). We show that all seven analyzed MSP mutants unfold substrates faster. Mutant homo- and heterohexamers exhibit tighter UN binding and faster substrate processing. Our structural studies suggest that the increased UN affinity originates from a decoupling of p97's nucleotide state and the positioning of its N-terminal domains. Together, our data support a gain-of-function model for p97-UN-dependent processes in MSP and underscore the importance of N-terminal domain movements for adaptor recruitment and substrate processing by p97.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Mutação , Proteínas Nucleares/química , Proteína com Valosina/química , Sítios de Ligação , Clonagem Molecular , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Deficiências na Proteostase/genética , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
13.
Cell Rep ; 28(11): 2777-2783.e4, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509741

RESUMO

Disassembly of the replisome is the final step of chromosome duplication in eukaryotes. In budding yeast and metazoa, cullin ubiquitin ligases are required to ubiquitylate the Cdc45-MCM-GINS (CMG) helicase that lies at the heart of the replisome, leading to a disassembly reaction that is dependent upon the ATPase known as Cdc48 or p97. Here, we describe the reconstitution of replisome disassembly, using a purified complex of the budding yeast replisome in association with the cullin ligase SCFDia2. Upon addition of E1 and E2 enzymes, together with ubiquitin and ATP, the CMG helicase is ubiquitylated on its Mcm7 subunit. Subsequent addition of Cdc48, together with its cofactors Ufd1-Npl4, drives efficient disassembly of ubiquitylated CMG, thereby recapitulating the steps of replisome disassembly that are observed in vivo. Our findings define the minimal requirements for disassembly of the eukaryotic replisome and provide a model system for studying the disassembly of protein complexes by Cdc48-Ufd1-Npl4.


Assuntos
DNA Helicases/metabolismo , Proteínas F-Box/metabolismo , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Ubiquitinação/genética , Proteína com Valosina/metabolismo , DNA Helicases/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Técnicas In Vitro , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína com Valosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Schizophr Res Cogn ; 17: 100134, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31193788

RESUMO

22q11.2 heterozygous multigene deletions confer an increased risk of schizophrenia with marked impairment of cognition. We explored whether genes on 22q11.2 are associated with cognitive performance in patients with idiopathic schizophrenia. A total of 240 schizophrenia patients and 240 healthy controls underwent the Japanese-language version of the Brief Assessment of Cognition in Schizophrenia (BACS) and were genotyped for 115 tag single-nucleotide polymorphisms (tag SNPs) at the 22q11.2 region using the golden gate assay (Illumina®). Associations between z-scores of the BACS cognitive domains and SNPs and haplotypes were analyzed using linear regression in PLINK 1.07. An additional set of 149 patients with bipolar disorder were included for cognitive assessment and selected SNPs were genotyped using real-time PCR. Patients with schizophrenia and bipolar disorder showed qualitatively comparable profiles of cognitive impairment across BACS subdomains, as revealed by significant correlation between the two groups in the resulting cognitive effect sizes relative to controls. rs4819522 (TBX1) and rs2238769 (UFD1L) were significantly and nominally associated, respectively, with symbol coding in patients with schizophrenia. Haplotype analyses revealed that haplotypes containing the A allele at rs4819522 and G allele at rs2238769 showed significant negative associations with symbol coding in patients with schizophrenia. There was no effect of any haplotypes on cognition in patients with bipolar disorder. Our results have implications for the understanding of the role of haplotypes of UFD1L and TBX1 genes associated with symbol coding in patients with schizophrenia. Further replication studies in a cohort of newly diagnosed patients and other ethnicities are warranted.

15.
Mol Cell ; 69(4): 664-676.e5, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452641

RESUMO

The morphological transformation of amorphous chromatin into distinct chromosomes is a hallmark of mitosis. To achieve this, chromatin must be compacted and remodeled by a ring-shaped enzyme complex known as condensin. However, the mechanistic basis underpinning condensin's role in chromosome remodeling has remained elusive. Here we show that condensin has a strong tendency to trap itself in its own reaction product during chromatin compaction and yet is capable of interacting with chromatin in a highly dynamic manner in vivo. To resolve this apparent paradox, we identified specific chromatin remodelers and AAA-class ATPases that act in a coordinated manner to release condensin from chromatin entrapment. The Cdc48 segregase is the central linchpin of this regulatory mechanism and promotes ubiquitin-dependent cycling of condensin on mitotic chromatin as well as effective chromosome condensation. Collectively, our results show that condensin inhibition by its own reaction product is relieved by forceful enzyme extraction from chromatin.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Cromossomos Fúngicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína com Valosina/metabolismo , Adenosina Trifosfatases/genética , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Morfogênese , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteína com Valosina/genética
16.
Proc Natl Acad Sci U S A ; 114(22): E4380-E4388, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28512218

RESUMO

p97 is a "segregase" that plays a key role in numerous ubiquitin (Ub)-dependent pathways such as ER-associated degradation. It has been hypothesized that p97 extracts proteins from membranes or macromolecular complexes to enable their proteasomal degradation; however, the complex nature of p97 substrates has made it difficult to directly observe the fundamental basis for this activity. To address this issue, we developed a soluble p97 substrate-Ub-GFP modified with K48-linked ubiquitin chains-for in vitro p97 activity assays. We demonstrate that WT p97 can unfold proteins and that this activity is dependent on the p97 adaptor NPLOC4-UFD1L, ATP hydrolysis, and substrate ubiquitination, with branched chains providing maximal stimulation. Furthermore, we show that a p97 mutant that causes inclusion body myopathy, Paget's disease of bone, and frontotemporal dementia in humans unfolds substrate faster, suggesting that excess activity may underlie pathogenesis. This work overcomes a significant barrier in the study of p97 and will allow the future dissection of p97 mechanism at a level of detail previously unattainable.


Assuntos
Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Proteínas Nucleares/metabolismo , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Trifosfato de Adenosina/metabolismo , Demência Frontotemporal/etiologia , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Distrofia Muscular do Cíngulo dos Membros/etiologia , Mutação , Miosite de Corpos de Inclusão/etiologia , Osteíte Deformante/etiologia , Desdobramento de Proteína , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Ubiquitina/metabolismo , Proteína com Valosina/química
17.
Cell Rep ; 18(13): 3033-3042, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28355556

RESUMO

Disassembly of the Cdc45-MCM-GINS (CMG) DNA helicase is the key regulated step during DNA replication termination in eukaryotes, involving ubiquitylation of the Mcm7 helicase subunit, leading to a disassembly process that requires the Cdc48 "segregase". Here, we employ a screen to identify partners of budding yeast Cdc48 that are important for disassembly of ubiquitylated CMG helicase at the end of chromosome replication. We demonstrate that the ubiquitin-binding Ufd1-Npl4 complex recruits Cdc48 to ubiquitylated CMG. Ubiquitylation of CMG in yeast cell extracts is dependent upon lysine 29 of Mcm7, which is the only detectable site of ubiquitylation both in vitro and in vivo (though in vivo other sites can be modified when K29 is mutated). Mutation of K29 abrogates in vitro recruitment of Ufd1-Npl4-Cdc48 to the CMG helicase, supporting a model whereby Ufd1-Npl4 recruits Cdc48 to ubiquitylated CMG at the end of chromosome replication, thereby driving the disassembly reaction.


Assuntos
Cromossomos Fúngicos/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Lisina/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitinação
18.
J Biol Chem ; 292(8): 3112-3128, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28077573

RESUMO

A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical "retrochaperone" for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 from retrotranslocated proteins and rendered them insoluble. All components of the canonical Cdc48 complex Cdc48-Npl4-Ufd1 were present in solubilized ERAD-M substrates. This function of the complex was observed for both HRD and DOA pathway substrates. Thus, in addition to the long known ATP-dependent extraction of ERAD substrates during retrotranslocation, the Cdc48 complex is generally and critically needed for the solubility of retrotranslocated ERAD-M intermediates.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Degradação Associada com o Retículo Endoplasmático , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade , Ubiquitina/metabolismo , Ubiquitinação , Proteína com Valosina
19.
FEBS Lett ; 589(19 Pt A): 2578-89, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26320413

RESUMO

p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease-associated p97 mutations on cofactor binding.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Ciclo Celular/química , Estrutura Terciária de Proteína , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Proteína com Valosina
20.
J Biol Chem ; 290(37): 22678-85, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221037

RESUMO

Covalent modification of the proteome by SUMO is critical for genetic stability and cell growth. Equally crucial to these processes is the removal of SUMO from its targets by the Ulp1 (HuSENP1/2) family of SUMO proteases. Ulp1 activity is normally spatially restricted, because it is localized to the nuclear periphery via interactions with the nuclear pore. Delocalization of Ulp1 causes DNA damage and cell cycle defects, phenotypes thought to be caused by inappropriate desumoylation of nucleoplasmic targets that are normally spatially protected from Ulp1. Here, we define a novel consequence of Ulp1 deregulation, with a major impact on SUMO pathway function. In fission yeast lacking Nup132 (Sc/HuNUP133), Ulp1 is delocalized and can no longer antagonize sumoylation of the PIAS family SUMO E3 ligase, Pli1. Consequently, SUMO chain-modified Pli1 is targeted for proteasomal degradation by the concerted action of a SUMO-targeted ubiquitin ligase (STUbL) and Cdc48-Ufd1-Npl4. Pli1 degradation causes the profound SUMO pathway defects and associated centromere dysfunction in cells lacking Nup132. Thus, perhaps counterintuitively, Ulp1-mediated desumoylation can promote SUMO modification by stabilizing a SUMO E3 ligase.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Sumoilação/fisiologia , Cisteína Endopeptidases/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteína SUMO-1/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA