RESUMO
Acetoacetate (AcAc) and D-beta-hydroxybutyrate (D-ßOHB), the two major ketone bodies found in circulation, are linked to multiple physiological and pathophysiological states. Therefore, analytical methodologies surrounding the quantification of total ketone body (TKB) concentrations in biological matrices are paramount. Traditional methods to quantify TKBs relied on indirect spectrophotometric assays with narrow dynamic ranges, which have been significantly improved upon by modern mass spectrometry (MS)-based approaches. However, the lack of stable isotope-labeled internal standards (ISs) for AcAc and the need to distinguish D-ßOHB from its closely related structural and enantiomeric isomers pose significant obstacles. Here, we provide a protocol to synthesize and quantify a [13C] stable isotope-labeled IS for AcAc, which, in conjunction with a commercially available [2H] stable isotope-labeled IS for ßOHB, allows TKBs to be measured across multiple biological matrices. This rapid (7 min) analysis employs reverse phase ultra-high performance liquid chromatography (RP-UHPLC) coupled to tandem MS (MS/MS) to distinguish ßOHB from three structural isomers using parallel reaction monitoring (PRM), providing excellent specificity and selectivity. Finally, a method is provided that distinguishes D-ßOHB from L-ßOHB using a simple one-step derivatization to produce the corresponding diastereomers, which can be chromatographically resolved using the same rapid RP-UHPLC separation with new PRM transitions. In summary, this method provides a rigorous analytical pipeline for the analysis of TKBs in biological matrices via leveraging two authentic stable isotope-labeled ISs and RP-UHPLC-MS/MS.
Assuntos
Isótopos de Carbono , Marcação por Isótopo , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Marcação por Isótopo/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Isótopos de Carbono/química , Corpos Cetônicos/química , Acetoacetatos/química , Cromatografia de Fase Reversa/métodos , Padrões de Referência , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/análise , AnimaisRESUMO
BACKGROUND: Polygonum multiflorum-induced liver injury (PM-DILI) has significantly hindered its clinical application and development. METHODS: This study investigates the variation in content and toxicity of dianthrones, the toxic components of P. multiflorum, during different processing cycles. We employed the ultra-high-performance liquid chromatography triple quadrupole mass spectrometry method to quantify six dianthrones in raw P. multiflorum and formulations processed with a method called nine cycles of steaming and sunning. Additionally, toxicity assessments were conducted using human normal liver cell line L02 and zebrafish embryos. RESULTS: Results indicate a gradual reduction in dianthrones content with increasing processing cycles. Processed formulations exhibited significantly reduced cytotoxicity in L02 cells and hepatotoxicity in zebrafish embryos. CONCLUSIONS: Our findings elucidate the relationship between processing cycles and P. multiflorum toxicity, providing theoretical support for its safe use.
RESUMO
The aim of the present research was to develop and validate a robust analytical method for the monitoring of 260 pesticide residues in Extra Virgin Olive Oil (EVOO) expanding the 185 molecules requested by the multiannual control program. The analytical procedure included an ultrasound-assisted liquid-liquid microextraction followed by low-pressure gas chromatography (LP-GC) and ultra-high-performance liquid chromatography (UHPLC), both coupled to triple quadrupole mass spectrometry. Matrix-matched calibration curves showed good linearity with coefficients of determination greater than 0.999. Accuracy values ranged from 65.5 % to 122.3 % and from 61.1 % to 133.3 % for LP-GC and UHPLC, respectively. The recoveries ranged from 14.0 % to 131.3 %. Fifty commercial EVOO, from Italian and EU production, were analyzed to assess pesticide contamination during the 2021-2023 harvesting seasons. The research focused on evaluating consumer risk by assessing both chronic and acute dietary exposure, using the Pesticide Residue Intake Model developed by EFSA.
RESUMO
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction.
RESUMO
The objectives of this study are to examine the disparities in serum and intestinal tissue metabolites between a perimenopausal rat model and control rats and to analyze the diversity and functionality of intestinal microorganisms to determine the potential correlation between intestinal flora and metabolites. We established a rat model of perimenopausal syndrome (PMS) and performed an integrated analysis of metabolome and microbiome. Orthogonal partial least-squares discriminant analysis scores and replacement tests indicated distinct separations of anion and cation levels between serum and intestinal samples of the model and control groups. Furthermore, lipids and lipid-like molecules constituted the largest percentage of HMDB compounds in both serum and intestinal tissues, followed by organic acids and derivatives, and organoheterocyclic compounds, with other compounds showing significant variability. Moreover, analysis of diversity and functional enrichment of the intestinal microflora and correlation analysis with metabolites revealed significant variability in the composition of the intestinal flora between the normal control and perimenopausal groups, with these differentially expressed intestinal flora strongly correlated with their metabolites. The findings of this study are expected to contribute to understanding the indications and contraindications for estrogen application in perimenopausal women and to aid in the development of appropriate therapeutic agents. IMPORTANCE: In this work, we employed 16S ribosomal RNA gene sequencing to analyze the gut microbes in stool samples. In addition, we conducted an ultra-high-performance liquid chromatography-tandem mass spectrometry-based metabolomics approach on gut tissue and serum obtained from rats with perimenopausal syndrome (PMS) and healthy controls. By characterizing the composition and metabolomic properties of gut microbes in PMS rats, we aim to enhance our understanding of their role in women's health, emphasizing the significance of regulating gut microbes in the context of menopausal women's well-being. We aim to provide a theoretical basis for the prevention and treatment of PMS in terms of gut microflora as well as metabolism.
RESUMO
Phenoxy carboxylic acid herbicides (PCAs) are difficult to degrade and, thus, pose significant threats to the environment and human health. The limit for 2,4-dichlorophenoxyacetic acid is 30 µg/L in China's standards for drinking water quality, 70 µg/L in the United States' drinking water standards, and 30 µg/L in the World Health Organization's guidelines for drinking water quality. Therefore, the development of an effective detection method for trace PCAs in water is a crucial endeavor. Metal-organic frameworks (MOFs) are novel porous materials that possess advantages such as a large specific surface area, adjustable pore size, and abundant active sites. They exhibit excellent adsorption capability for various compounds. However, the applications of MOFs as adsorbents are limited. For example, the process of isolating powdered MOFs from aqueous solutions is laborious, and microporous MOFs exhibit limited surface affinity, which decreases their mass transfer efficiency in the liquid phase. MOF crystals can be embedded in a substrate to overcome these limitations. Aerogels are obtained by drying hydrogels, which are hydrophilic polymers with a three-dimensional crosslinked network structure. Spongy aerogel materials exhibit unique structural properties such as high porosity, large pore volume, ultralow density, and easy tailorability. When MOFs are combined with an aerogel, their efficient and selective adsorption properties are preserved. In addition, MOF aerogels exhibit a hierarchical porous structure, which enhances the affinity and mass transfer efficiency of the MOF for target molecules. At present, MOF aerogels are primarily prepared by freeze-drying or using supercritical carbon dioxide. These drying processes require significant amounts of energy and time. Hence, the development of greener and more efficient methods to prepare skeleton aerogels is urgently needed. In this study, we prepared an environment-friendly aerogel at ambient temperature and pressure without the use of specialized drying equipment. This ambient-dried MOF composite aerogel was then used for the dispersive solid phase extraction (DSPE) of seven PCAs from environmental water, followed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The key parameters affecting the efficiency of DSPE, including the extraction conditions, ratio of MIL-101(Fe)-NH2 to sodium alginate, pH of the aqueous samples, extraction time, ionic strength (salinity), and elution conditions, such as the elution solvent ratio, elution time, and elution volume, were investigated to obtain optimal extraction efficiency. The adsorbent could adsorb the target contaminants within 12 min, and the analytes could be completely desorbed within 30 s by elution with 4 mL of 1.5% (v/v) formic acid in methanol solution. The water samples could be analyzed without pH adjustment. The main adsorption mechanisms were electrostatic interactions and π-π conjugation. Thus, a new method based on MOF aerogels coupled with UHPLC-MS/MS was developed for the determination of the seven PCA residues in water. The calibration curves for the seven PCAs showed good linearity (r2≥0.9986), with limits of detection (LODs) and quantification (LOQs) ranging from 0.30 to 1.52 ng/L and from 1.00 to 5.00 ng/L, respectively. Good intra- and inter-day precision values of 6.5%-17.1% and 7.4%-19.4%, respectively, were achieved under low (8 ng/L), medium (80 ng/L), and high (800 ng/L) spiking levels. The developed method was applied to the detection of PCAs in surface water, seawater, and waste leachate, and the detected mass concentrations ranged from 0.6 to 19.3 ng/L. Spiked recovery experiments were conducted at mass concentrations of 8, 80, and 800 ng/L, and the recoveries ranged from 61.7% to 120.3%. The proposed method demonstrates good sensitivity, precision, and accuracy, and has potential applications in the detection of trace PCAs in environmental water.
RESUMO
BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. The fruits of Illicium verum, which is a medicinal and edible resource, have been shown to have anti-inflammatory properties. METHODS: In this study, we investigated the effects of I. verum extracts (IVEs) on human RA fibroblasts-like synoviocytes (RA-FLS) by using a sensitive and selective ultra-high-performance liquid chromatography with high-definition mass spectrometry (UPLC-HDMS) method. We subsequently analyzed the metabolites produced after the incubation of cultured RA-FLS with IVEs. RESULTS: IVEs inhibited the proliferation and suppressed the migration of RA-FLS, and reduced the levels of inflammatory factors including TNF-α and IL-6. Twenty differential metabolites responsible for the effects of IVEs were screened and annotated based on the UPLC-HDMS data by using a cell metabolomics approach. DISCUSSION: Our findings suggest that treating RA-FLS with IVEs can regulate lipid and amino acid metabolism, indicating that this extract has the potential to modify the metabolic pathways that cause inflammation in RA. CONCLUSIONS: This might lead to novel therapeutic strategies for managing patients with RA.
RESUMO
Xanthine oxidase (XOD) is a key enzyme that promotes the oxidation of xanthine/hypoxanthine to form uric acid, and the accumulation of uric acid leads to hyperuricaemia. The prevalence of gout caused by hyperuricaemia is increasing year by year. TAOZHI (TZ) can be used for the treatment of rheumatic arthralgia due to qi stagnation and blood stasis and contains a large number of polyphenolic components. The aim of this study was to investigate the relationship between chromatograms and XOD inhibition of 21 batches of TZ total polyphenol extract samples. Chemometric methods such as grey correlation analysis, bivariate correlation analysis, and partial least squares regression were used to identify the active ingredient groups in the total polyphenol extracts of TZ, which were validated using molecular docking techniques. The total polyphenol content contained in the 21 batches did not differ significantly, and all batches showed inhibitory effects on XOD. Spectroeffect correlation analysis showed that the inhibitory effect of TZ on XOD activity was the result of the synergistic effect of multiple components, and the active component groups screened to inhibit XOD were F2 (4-O-Caffeoylquinic acid), F4, and F10 (naringenin). The molecular docking results showed that the binding energies of all nine dockings were lower than -7.5 kcal/mol, and the binding modes included hydrogen bonding, hydrophobic forces, salt bridges, and π-staking, and the small molecules might exert their pharmacological effects by binding to XOD through the residue sites of the amino acids, such as threonine, arginine, and leucine. This study provides some theoretical basis for the development and utilisation of TZ total polyphenols.
Assuntos
Simulação de Acoplamento Molecular , Polifenóis , Xantina Oxidase , Polifenóis/química , Polifenóis/farmacologia , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/química , Xantina Oxidase/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Quimiometria , HumanosRESUMO
This manuscript discusses the development of a reversed-phase ultra high-performance liquid chromatography (RP UHPLC) method based on phenyl-bonded stationary phases without ion-pairs for the separation and identification of oligonucleotides. The elimination of ion-pair reagents makes the proposed protocol as more compliant to the principles of green chemistry, compared to the traditional ion-pair reversed-phase liquid chromatography methods (IP RP LC). In detail, three phenyl-based stationary phases were tested, namely a C18/AR (a C18 stationary phase with the addition of aromatic groups), a Phenyl-hexyl, and a Diphenyl. Generally, the retention of oligonucleotides increases with the increase of salt concentration and the decrease of the pH, thus confirming the significant impact of van der Waals interactions, salting-out effect, and π-electrons interactions in the retention mechanism. The highest retention and best peak symmetry were observed for the C18/AR stationary phase, while the lowest retention for the Phenyl-hexyl, with retention influenced by the type of salt in the mobile phase. The obtained methods using C18/AR stationary phases allow for the effective separations of positional isomers and for identifying impurities and degradation products using RP UHPLC Q-TOF-MS in a comparatively short time. The application of RP UHPLC Q-TOF-MS provides reasonable selectivity for the resolution of 33 impurities and two degradation products. Both groups of compounds are mainly 3'N and 5'N-shortmers, but in the case of impurities, modifications of cyclic phosphate and phosphate groups were also identified. Nevertheless, Diphenyl and Phenyl-Hexyl may be applied to separate modified oligonucleotides with higher salt concentrations. The proposed separation methods without ion-pair reagents contribute to a more sustainable approach in oligonucleotide analysis.
Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Oligonucleotídeos/química , Oligonucleotídeos/análise , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodosRESUMO
Effective strategies are required to address food safety issues related to the illegal addition of antihypertensive drugs to food and claims of antihypertensive function. In this study, a novel ultra-high performance liquid chromatography-triple-quadrupole mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of three antihypertensive drugs (azilsartan, candesartan cilexetil, and lacidipine) in 12 food matrices (pressed candies, solid beverages, alternative teas, tea drinks, biscuits, jellies, mixed liquors, oral liquids, medicinal teas, tablets, hard capsules, and soft capsules). Initially, mass spectrometry parameters, such as the collision energies of the three antihypertensive drugs, were optimized. Subsequently, the response intensities and chromatographic separation conditions of the three drugs in different mobile phases were compared. In addition, to enhance the recoveries, various extraction solvents and purification methods, including solid-phase extraction (SPE) columns and the QuEChERS technique, were investigated. In the developed method, sample determination involved three steps. First, the sample was extracted using 0.2% (v/v) formic acid in acetonitrile and then filtered using high-speed centrifugation, in addition, the extracted solution of alternative tea and medicinal tea was purified using the QuEChERS technique. Second, the supernatant was diluted with water, and filtered through a 0.22 µm polytetrafluoroethylene (PTFE) membrane. Finally, the analytes were separated on an Agilent Eclipse Plus RRHD C18 column (50 mm×2.1 mm, 1.8 µm) using a 5 mmol/L ammonium formate aqueous solution and acetonitrile as the mobile phases under gradient elution conditions and then detected using UHPLC-MS/MS with positive electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. Quantitative analysis was performed using a matrix-matched external standard method. Methodological validation showed good linear relationships for all three antihypertensive drugs in the investigated concentration ranges, with correlation coefficients (r2) greater than 0.996. The limit of detection (LOD) and limit of quantification (LOQ) of lacidipine were 0.02 mg/kg and 0.04 mg/kg, respectively, whereas those of the other two drugs were 0.01 mg/kg and 0.02 mg/kg, respectively. In the 12 food matrices, the average recoveries of the drugs ranged from 86.6% to 107.5% with relative standard deviations (RSDs) of 1.1%-10.9% (n=6) at low, medium, and high spiked levels. Furthermore, this method was successfully applied to the analysis of real food samples. Overall, the newly developed method is simple, rapid, sensitive, accurate, and suitable for the qualitative and quantitative determination of antihypertensive drugs in different food matrices. This work could provide technical support for food safety agencies in implementing measures against the illegal addition of antihypertensive drugs to food.
Assuntos
Anti-Hipertensivos , Contaminação de Alimentos , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Anti-Hipertensivos/análise , Contaminação de Alimentos/análise , Benzimidazóis/análise , Compostos de Bifenilo/análise , Tetrazóis/análise , Análise de Alimentos/métodos , OxidiazóisRESUMO
OBJECTIVE: Chromatographic retention time correction is one of the important steps to effectively improve the accuracy of identification. This article proposed a strategy for untargeted screening of biological samples based on retention time correction. METHODS: A pre-treatment method for biological samples was established. The conditions of liquid chromatography and mass spectrometry were optimized. Fourteen compounds were selected as calibration agents. The retention time correction of different samples, different injection time, different brands of instruments, changing chromatographic column and changing mobile phase were investigated. RESULTS: Calibration agents had a wide coverage, good stability and no interference with sample determination. They could be uniformly distributed in the chromatogram in both positive and negative ion modes. The chromatogram was divided into several time intervals. Calibration agents in each time period were used for retention time linear correction, and the correction effects were good. CONCLUSION: The retention time correction method could eliminate the retention time drift caused by experimental conditions, improve the accuracy of qualitative analysis, and help to solve the problem of high false positive result based on mass spectrum information.
Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , HumanosRESUMO
BACKGROUND: Chemotherapy-induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN; however, the mechanism of the activity is not entirely understood. OBJECTIVE: This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN. METHODS: Changes in behavioral, biochemical, histopathological, and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments. RESULTS: A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α,21-dihydroxypregnenolone were targeted as core biomarkers. CONCLUSION: This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.
Assuntos
Antineoplásicos , Ácido Araquidônico , Medicamentos de Ervas Chinesas , Doenças do Sistema Nervoso Periférico , Medicamentos de Ervas Chinesas/farmacologia , Ácido Araquidônico/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Masculino , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , CamundongosRESUMO
This comprehensive analysis of the fruits of Rosa spp. (FR) evaluates their chemical components and antioxidant activity. The study quantified total flavonoids and polyphenols using aluminum trichloride colorimetric assay and Folin-Ciocalteu methods, with the fruit of Rosa. laxa Rtez. var. mollis Yü et Ku. sample exhibiting the highest concentrations of 59.21â mg/g and 81.13â mg/g, respectively. Ultra-High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UPLC-TQ-MS) assessed seven primary components, with notable levels of euscaphic acid, ursolic acid, and gallic acid. Antioxidant activities were tested using DPPH and ABTS methods, showing strong activities in samples the fruits of Rosa. persica Mickx ex Juss. and Rosa. laxa Rtez. var. kaschgarica (Rupr.) Y. L. Han. Chemometric analyses, including similarity, cluster, principal component, and grey relational analyses, were used to explore relationships between FR varieties and their antioxidant properties. The study provides a vital basis for future FR quality assessments.
RESUMO
BACKGROUND: Post-mortem toxicology constantly deals with the research of reliable alternative matrices to be applied in case of highly damaged corpses (such us carbonized, skeletonized, human remains, etc.). Teeth represent a promising alternative matrix since dental tissues are endowed by different features, resistance and stability after death. SCOPE: Since scant literature reported on the pharmacokinetics and mechanism of incorporation of xenobiotics into dental tissues, this pilot research aims to investigate whether in the pulp can be detected the same substances found in blood in drug related death cases. Secondly, the study is addressed to disclose the possible deposit of drugs in dental hard tissues (dentine and/or enamel), thus contributing to reconstruct the drug abuse history (timing, e.g.). MATERIALS AND METHODS: The study experimented with a novel method to separately analyse dental enamel, dentin, and pulp, applied to 10 teeth collected during autopsies of drug-related deaths along with blood and hair samples for classic toxicological analyses. Each tooth was prepared by "pulverization technique" and then analysed by gas chromatography paired with mass spectrometry (GC-MS) and ultra high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC/HR-MS) for searching cocaine, opiates, and metabolites. The results were then compared with those obtained from blood and hair samples. RESULTS: Preliminary results demonstrated that teeth differ from any other classic matrix (blood and hairs) since the qualitative correspondence of the detected substances between pulp and blood as well as dental hard tissues and hair suggests that they can be useful in post-mortem evaluation as a unique matrix for both acute and chronic assumptions of drugs. The mechanism of accumulation of substances in mineralized dental tissues emerged the most significant result, being influenced by the type of molecule and the method of assumption. The main limitation of this study is the limited availability of the sample and the absence of anamnestic information of the time, rates and method of drug assumption during life. Further research is necessary to systematically investigate the distribution of different substances within the different tissues of the tooth.
Assuntos
Esmalte Dentário , Polpa Dentária , Dentina , Toxicologia Forense , Cromatografia Gasosa-Espectrometria de Massas , Detecção do Abuso de Substâncias , Transtornos Relacionados ao Uso de Substâncias , Humanos , Projetos Piloto , Esmalte Dentário/química , Dentina/química , Polpa Dentária/química , Polpa Dentária/patologia , Detecção do Abuso de Substâncias/métodos , Masculino , Adulto , Feminino , Toxicologia Forense/métodos , Cabelo/química , Pessoa de Meia-Idade , Entorpecentes/análise , Cocaína/análise , Adulto Jovem , Cromatografia Líquida de Alta Pressão , Analgésicos Opioides/análise , Espectrometria de MassasRESUMO
Aristolochic acids are one of the major compounds in aristolochia plants, which are nephrotoxic and carcinogenic. A method was established for the detection and identification of aristolochic acids and their DNA adducts in four different herbs using ultra-high performance liquid chromatography-ion mobility quadrupole time-of flight mass spectrometry. Solid phase extraction conditions were optimized to improve the sensitivity of the experiment by using 40 mg of C18 as adsorbent and 100 µL ethanol as elution solvent. At a collision energy of 10-40 eV, these compounds and cleavage patterns were precisely identified and analyzed by secondary fragmentation and collision cross section values. The obtained mass spectrometry data were then analyzed by targeted metabolomics, including principal component analysis, partial least squares-discriminant analysis and hierarchical clustering analysis, and importing the samples in the established model, the confidence values can reach 0.61 and 0.76. All in all, this method can provide a useful tool for the detection of aristolochic acids and deoxyribonucleic acid adducts. In conclusion, this method was successfully used for the detection and identification of aristolochic acids and their DNA adducts.
Assuntos
Aristolochia , Ácidos Aristolóquicos , Adutos de DNA , Metabolômica , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/análise , Adutos de DNA/análise , Adutos de DNA/química , Cromatografia Líquida de Alta Pressão/métodos , Aristolochia/química , Metabolômica/métodos , Espectrometria de Massas/métodos , Extração em Fase Sólida , Análise de Componente Principal , Espectrometria de Mobilidade Iônica/métodosRESUMO
This study concerns the synthesis of the florfenicol (FF) metabolites florfenicol amine (FFA), florfenicol alcohol (FFOH), and monochloroflorfenicol (FFCl), for their subsequent use as reference standards in On-line solid-phase extraction-ultra high-performance liquid chromatography-tandem mass spectrometry (SPE-UHPLC-MS/MS) analysis. The metabolites were characterized using 1H and 13C NMR, as well as HRMS, and their purities were confirmed by quantitative NMR to ensure analytical reliability. Validation of the developed analytical method showed that it presented acceptable performance, with linearity >0.99 for all the target analytes, accuracies within ±10 % of nominal concentrations, and intra- and inter-day precisions within 15 %. Application of this method to fillets from fish that had been treated with florfenicol (dose of 10 mg/kg bw daily) demonstrated its effectiveness in consistently detecting FF and its metabolites throughout the treatment. The results emphasized the utility of the method for enhancing pharmacokinetic and residue depletion research. The ability to precisely monitor the drug and its metabolites in treated fish provides important insights into florfenicol metabolism, laying the groundwork for further comprehensive profiling studies of metabolites in fish tissue.
Assuntos
Extração em Fase Sólida , Espectrometria de Massas em Tandem , Tianfenicol , Tianfenicol/análogos & derivados , Tianfenicol/análise , Tianfenicol/metabolismo , Tianfenicol/farmacocinética , Tianfenicol/química , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Extração em Fase Sólida/métodos , Reprodutibilidade dos Testes , Modelos Lineares , Limite de Detecção , Ciclídeos/metabolismo , Resíduos de Drogas/análise , Resíduos de Drogas/metabolismo , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/metabolismo , Alimentos Marinhos/análiseRESUMO
Background and Aims Abnormalities in tryptophan (TRP) metabolism induce abdominal pain and intestinal motility disorders. The study of TRP metabolism in diarrhea-predominant-irritable bowel syndrome (IBS-D) is important for the prevention, diagnosis, and treatment of this disease. In this study, a rapid and reliable ultra performance liquid chromatography-mass spectrometry (UPLC-MS) method was established to quantify tryptophan-kynurenine (TRP-Kyn) metabolism in the colon of a rat model with IBS-D. Methods The proteins were precipitated by methanol, chromatographically separated on a Welch Ultimate® Polar RP column with a gradient elution for 12â¯min, and detected by high-resolution tandem mass spectrometry. Pure water were used as an alternative mechanism for standard calibration, and the stable structural analog 2-Cl-Phe was used as an internal standard. Results Within a certain range, the r of TRP, kynurenine (Kyn) and quinolinic acid (QA), kynurenic acid (KA) are greater than 0.99, were found to be accurate and precise. The metabolism of TRP was significantly up-regulated along the Kyn pathway in the IBS-D model rats and normalized after treatment with pivacurium bromide. Conclusion This study investigates the mechanisms of IBS-D gastrointestinal dysfunction from the perspective of colonic TRP metabolism, and also provides new directions for the diagnosis and therapeutic approach of this disease.
Assuntos
Modelos Animais de Doenças , Síndrome do Intestino Irritável , Cinurenina , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Triptofano , Animais , Triptofano/metabolismo , Cinurenina/metabolismo , Cinurenina/análogos & derivados , Ratos , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/tratamento farmacológico , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Espectrometria de Massas em Tandem/métodos , Diarreia/metabolismo , Diarreia/tratamento farmacológico , Colo/metabolismo , Ácido Cinurênico/metabolismo , Ácido Quinolínico/metabolismo , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVE: To explore the mechanisms of Qianlie Jindan Tablets (QLJD) acting on chronic nonbacterial prostatitis (CNP) in rats based on non-targeted urine metabolomics. METHODS: According to the body mass index, we equally randomized 30 eight-week-old male SD rats into a blank control, a CNP model control and a QLJD medication group. We established the CNP model in the latter groups and, from the 4th day of modeling, treated the rats in the blank and model control groups intragastrically with normal saline and those in the QLJD medication group with QLJD suspension, qd, for 30 successive days. Then we detected the changes in the metabolites of the rats by ultra-high-performance liquid chromatography-tandem mass spectrometry, and identified the differential metabolites in different groups by multivariate statistical analysis, followed by functional annotation of the differential metabolites. RESULTS: Eight common metabolites were identified by metabolomics analysis, of which 5 were decreased in the CNP model controls and increased in the QLJD medication group, while the other 3 increased in the former and decreased in the latter group. Creatinine and genistein were important differential metabolites, and the arginine and proline metabolic pathways and isoflavone biosynthesis pathways were the main ones for QLJD acting on CNP. Compared with the blank controls, the model controls showed up-regulated arginine and proline metabolic pathways, increased production of creatinine, down-regulated isoflavone biosynthetic pathway and decreased production of genistein. The above changes in the model controls were all reversed in the QLJD medication group. CONCLUSION: QLJD acts effectively on CNP in male rats by regulating L-arginine and proline metabolic pathways, as well as the isoflavone biosynthesis pathway and naringenin metabolism.
Assuntos
Medicamentos de Ervas Chinesas , Metabolômica , Prostatite , Ratos Sprague-Dawley , Masculino , Animais , Ratos , Prostatite/metabolismo , Prostatite/urina , Prostatite/tratamento farmacológico , Metabolômica/métodos , Comprimidos , Cromatografia Líquida de Alta Pressão , Arginina/metabolismo , Doença Crônica , Genisteína/urina , Prolina/urina , Prolina/metabolismo , Modelos Animais de Doenças , Creatinina/urina , Creatinina/metabolismo , Espectrometria de Massas em TandemRESUMO
Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 µg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 µg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 µg/kg) were 78.1%-118%, with the intra- and inter-day precisions of 0.2%-11.1% and 0.8%-8.7%, respectively. This method was applied in analyzing real samples, and PFASs including perfluorooctanesulfonic acid, perfluorooctanoic acid, perfluoroundecanoic acid, perfluorododecanoic acid, and perfluorotridecanoic acid, were detected in all 11 samples evaluated. This method is simple, sensitive, and suitable for use in analyzing PFASs in fish samples.
Assuntos
Peixes , Fluorocarbonos , Contaminação de Alimentos , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Fluorocarbonos/análise , Animais , Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Caprilatos/análise , Ácidos Alcanossulfônicos/análiseRESUMO
Milk is an important consumer product with high nutritional value. The presence of veterinary drug residues in milk owing to the indiscriminate use of veterinary drugs may affect consumer health. In the mass spectrometric analysis of trace compounds, chromatographic co-eluting components easily interfere with the mass spectral signals obtained, affecting the accuracy of qualitative and quantitative analyses. Matrix purification is a promising method to reduce the matrix effect. Chitosan is a natural biopolymer with numerous active functional groups such as amino, acetyl, and hydroxyl groups; these groups can adsorb lipids through hydrophobic and electrostatic interactions. Chitosan also has the advantages of low production cost, stable chemical properties, and convenient modification. Novel chitosan-based materials are promising candidates for lipid purification. In this study, a chitosan membrane was modified with trimethoxyoctadecylsilane (C18-CSM). C18-CSM was prepared through one-step hydrolysis and used as a dispersive solid phase extraction (DSPE) adsorbent to purify the matrix during milk pretreatment. We combined C18-CSM with ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry (UHPLC-Q/Exactive Orbitrap MS) to develop an effective method for the extraction and determination of ofloxacin, enrofloxacin, ciprofloxacin, diazepam, and metronidazole in milk. C18-CSM was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle testing. The results indicated that the material has a rough surface and uniformly dense cross-section. The water contact angle of C18-CSM was 104°, indicating its good hydrophobicity. The pretreatment conditions (extraction solvent, dosage of NaCl, extraction frequency, and dosage of C18-CSM) that influenced the recoveries of the five veterinary drugs were investigated in detail. The optimal conditions were established as follows: 5% formic acid in acetonitrile, 1 g NaCl, extraction 1 time, 20 mg C18-CSM. Separation was performed on a Hypersil GOLD VANQUISH column (100 mm×2.1 mm, 1.9 µm). The mobile phase consisted of 0.1% formic acid aqueous solution and 0.1% formic acid in acetonitrile, and was flowed at a rate of 0.3 mL/min. The sample injection volume was 1 µL, and the column temperature was maintained at 25 â. Mass spectrometric analysis was performed in positive electrospray ionization mode. To verify the necessity of the purification material, the matrix effect was investigated using the matrix-matched standard curve method. The use of C18-CSM reduced the matrix effects of the five necessity drugs from the range of -22%-8.8% to the range of -13%-3.6%, indicating that C18-CSM is a highly efficient DSPE material. Under optimal conditions, the developed method showed good linearities within the range of 0.5-100 µg/L, with correlation coefficients (r2)≥0.9970. The limits of detection(LODs) and quantification (LOQs) were 0.2 µg/L and 0.5 µg/L, respectively. To assess the accuracy and precision of the method, we prepared milk samples with three spiked levels (low, medium, and high). The recoveries of the five veterinary drugs were ranged from 79.5% to 115%, and the intra-day and inter-day relative standard deviations were 7.0%-13% (n=6) and 1.3%-11% (n=3), respectively. This study provides a simple, accurate, and reliable method for the rapid and simultaneous determination of the five veterinary drug residues in milk.