Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Eur J Pediatr ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066822

RESUMO

Computed tomography (CT) is commonly used for paediatric thoracic diseases but involves radiation exposure and often requires intravenous contrast. We evaluated the performance of a magnetic resonance imaging (MRI) protocol including a 3D zero echo time (3D-ZTE) sequence for radiation-free and contrast-free imaging of the paediatric chest. In this prospective, single-centre study, children aged 6-16 years underwent chest CT and MRI within 48 h. CT and MRI exams were independently assessed by two paediatric radiologists. The primary outcome was the image quality of the 3D-ZTE sequence using a scoring system based on the acceptability of the images obtained and visibility of bronchial structures, vessels and fissures. Secondary outcomes included radiologists' ability to detect lung lesions on 3D-ZTE MRI images compared with CT images. Seventy-two children were included. Overall, the image quality achieved with the 3D-ZTE MRI sequence was inferior to that of CT for visualising pulmonary structures, with satisfactory lung image quality observed for 81.9% (59/72) and 100% (72/72) of patients, respectively. However, MRI sensitivity was excellent (above 90%) for the detection of certain lesions such as lung consolidation, proximal mucoid impactions, pulmonary cysts, ground glass opacities and honeycombing. Intermodality agreement (MRI versus CT) was consistently higher for the senior reader compared to the junior reader. CONCLUSION: Despite its overall lower image quality compared to CT, and the additional years of experience required for accurate interpretation, the 3D-ZTE MRI sequence demonstrated excellent sensitivity for several lesions, making it an appropriate imaging method in certain indications. WHAT IS KNOWN: • Chest radiography and CT are the main imaging modalities for paediatric thoracic diseases but involve radiation exposure and CT often requires IV contrast. • MRI is promising for radiation-free lung imaging in children but faces challenges of low signal-to-noise ratio and motion artefacts. WHAT IS NEW: • An MRI protocol including a 3D zero echo time (ZTE) sequence allows satisfactory visualisation of lung parenchyma in 82% of children. • Despite overall inferior image quality compared to CT, MRI demonstrated excellent sensitivity for several lesions, making it an appropriate imaging method in certain indications.

2.
Magn Reson Med ; 92(2): 702-714, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38525680

RESUMO

PURPOSE: This study aimed to develop a new high-resolution MRI sequence for the imaging of the ultra-short transverse relaxation time (uT2) components in the brain, while simultaneously providing proton density (PD) contrast for reference and quantification. THEORY: The sequence combines low flip angle balanced SSFP (bSSFP) and UTE techniques, together with a 3D dual-echo rosette k-space trajectory for readout. METHODS: The expected image contrast was evaluated by simulations. A study cohort of six healthy volunteers and eight multiple sclerosis (MS) patients was recruited to test the proposed sequence. Subtraction between two TEs was performed to extract uT2 signals. In addition, conventional longitudinal relaxation time (T1) weighted, T2-weighted, and PD-weighted MRI sequences were also acquired for comparison. RESULTS: Typical PD-contrast was found in the second TE images, while uT2 signals were selectively captured in the first TE images. The subtraction images presented signals primarily originating from uT2 components, but only if the first TE is short enough. Lesions in the MS subjects showed hyperintense signals in the second TE images but were hypointense signals in the subtraction images. The lesions had significantly lower signal intensity in subtraction images than normal white matter (WM), which indicated a reduction of uT2 components likely associated with myelin. CONCLUSION: 3D isotropic sub-millimeter (0.94 mm) spatial resolution images were acquired with the novel bSSFP UTE sequence within 3 min. It provided easy extraction of uT2 signals and PD-contrast for reference within a single acquisition.


Assuntos
Encéfalo , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Adulto , Masculino , Feminino , Algoritmos , Pessoa de Meia-Idade , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos , Voluntários Saudáveis , Simulação por Computador
3.
Animals (Basel) ; 13(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37685045

RESUMO

Fatigue-related subchondral bone injuries of the third metacarpal/metatarsal (McIII/MtIII) bones are common causes of wastage, and they are welfare concerns in racehorses. A better understanding of bone health and strength would improve animal welfare and be of benefit for the racing industry. The porosity index (PI) is an indirect measure of osseous pore size and number in bones, and it is therefore an interesting indicator of bone strength. MRI of compact bone using traditional methods, even with short echo times, fail to generate enough signal to assess bone architecture as water protons are tightly bound. Ultra-short echo time (UTE) sequences aim to increase the amount of signal detected in equine McIII/MtIII condyles. Cadaver specimens were imaged using a novel dual-echo UTE MRI technique, and PI was calculated and validated against quantitative CT-derived bone mineral density (BMD) measures. BMD and PI are inversely correlated in equine distal Mc/MtIII bone, with a weak mean r value of -0.29. There is a statistically significant difference in r values between the forelimbs and hindlimbs. Further work is needed to assess how correlation patterns behave in different areas of bone and to evaluate PI in horses with and without clinically relevant stress injuries.

4.
Magn Reson Med ; 90(5): 1905-1918, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392415

RESUMO

PURPOSE: To present the validation of a new Flexible Ultra-Short Echo time (FUSE) pulse sequence using a short-T2 phantom. METHODS: FUSE was developed to include a range of RF excitation pulses, trajectories, dimensionalities, and long-T2 suppression techniques, enabling real-time interchangeability of acquisition parameters. Additionally, we developed an improved 3D deblurring algorithm to correct for off-resonance artifacts. Several experiments were conducted to validate the efficacy of FUSE, by comparing different approaches for off-resonance artifact correction, variations in RF pulse and trajectory combinations, and long-T2 suppression techniques. All scans were performed on a 3 T system using an in-house short-T2 phantom. The evaluation of results included qualitative comparisons and quantitative assessments of the SNR and contrast-to-noise ratio. RESULTS: Using the capabilities of FUSE, we demonstrated that we could combine a shorter readout duration with our improved deblurring algorithm to effectively reduce off-resonance artifacts. Among the different RF and trajectory combinations, the spiral trajectory with the regular half-inc pulse achieves the highest SNRs. The dual-echo subtraction technique delivers better short-T2 contrast and superior suppression of water and agar signals, whereas the off-resonance saturation method successfully suppresses water and lipid signals simultaneously. CONCLUSION: In this work, we have validated the use of our new FUSE sequence using a short T2 phantom, demonstrating that multiple UTE acquisitions can be achieved within a single sequence. This new sequence may be useful for acquiring improved UTE images and the development of UTE imaging protocols.


Assuntos
Imageamento por Ressonância Magnética , Técnica de Subtração , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Artefatos , Água , Imageamento Tridimensional/métodos
5.
Quant Imaging Med Surg ; 13(5): 2807-2821, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179932

RESUMO

Background: T2* relaxation times in the spinal cartilage endplate (CEP) measured using ultra-short echo time magnetic resonance imaging (UTE MRI) reflect aspects of biochemical composition that influence the CEP's permeability to nutrients. Deficits in CEP composition measured using T2* biomarkers from UTE MRI are associated with more severe intervertebral disc degeneration in patients with chronic low back pain (cLBP). The goal of this study was to develop an objective, accurate, and efficient deep-learning-based method for calculating biomarkers of CEP health using UTE images. Methods: Multi-echo UTE MRI of the lumbar spine was acquired from a prospectively enrolled cross-sectional and consecutive cohort of 83 subjects spanning a wide range of ages and cLBP-related conditions. CEPs from the L4-S1 levels were manually segmented on 6,972 UTE images and used to train neural networks utilizing the u-net architecture. CEP segmentations and mean CEP T2* values derived from manually- and model-generated segmentations were compared using Dice scores, sensitivity, specificity, Bland-Altman, and receiver-operator characteristic (ROC) analysis. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated and related to model performance. Results: Compared with manual CEP segmentations, model-generated segmentations achieved sensitives of 0.80-0.91, specificities of 0.99, Dice scores of 0.77-0.85, area under the receiver-operating characteristic curve values of 0.99, and precision-recall (PR) AUC values of 0.56-0.77, depending on spinal level and sagittal image position. Mean CEP T2* values and principal CEP angles derived from the model-predicted segmentations had low bias in an unseen test dataset (T2* bias =0.33±2.37 ms, angle bias =0.36±2.65°). To simulate a hypothetical clinical scenario, the predicted segmentations were used to stratify CEPs into high, medium, and low T2* groups. Group predictions had diagnostic sensitivities of 0.77-0.86 and specificities of 0.86-0.95. Model performance was positively associated with image SNR and CNR. Conclusions: The trained deep learning models enable accurate, automated CEP segmentations and T2* biomarker computations that are statistically similar to those from manual segmentations. These models address limitations with inefficiency and subjectivity associated with manual methods. Such techniques could be used to elucidate the role of CEP composition in disc degeneration etiology and guide emerging therapies for cLBP.

6.
Interv Neuroradiol ; : 15910199231174546, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37151078

RESUMO

PURPOSE: Flow re-direction endoluminal device (FRED) is a novel dual-layer flow-diverting stent to treat cerebral aneurysms with high obliteration rates, however, it induces inevitable metal-related artifacts. We compared silent magnetic resonance angiography (MRA), a new MRA method using ultra-short time of echo and arterial spin-labeling, with conventional time-of-flight (TOF)-MRA for imaging aneurysms treated using FRED. METHODS: Between May 2020 and September 2022, 16 patients with unruptured internal carotid aneurysms treated using FRED simultaneously underwent silent MRA and TOF-MRA after treatment, with 36 follow-up sessions in total. Two observers independently graded the quality of intra-aneurysmal flow and stented parent arteries under both types of MRA from 1 (not visible) to 4 (nearly equal to digital subtraction angiography [DSA]), with reference to DSA images as a standard criterion. RESULTS: The mean scores for intra-aneurysmal flow and stented parent arteries were significantly better for silent MRA (3.93 ± 0.21 and 3.82 ± 0.32, respectively) than for TOF-MRA (2.08 ± 0.99 and 1.92 ± 0.79, respectively) (P < 0.01). Intermodality agreements for intra-aneurysmal flow and stented parent arteries were 0.87 and 0.90, respectively. CONCLUSION: Silent MRA is superior to TOF-MRA for assessing patients treated with FRED, with potential as an alternative imaging modality to DSA.

7.
BMC Med Imaging ; 23(1): 60, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081427

RESUMO

OBJECTIVE: To investigate the feasibility of ultra-short echo time (UTE) magnetic resonance imaging (MRI) in the assessment of cartilage endplate (CEP) damage and further evaluate the relationship between total endplate score (TEPS) and lumbar intervertebral disc (IVD) degeneration for chronic low back pain patients. MATERIALS AND METHODS: IVD were measured in 35 patients using UTE imaging at 3T MR. Subtracted UTE images between short and long TEs were obtained to depict anatomy of CEP. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated to assess the image quality quantitatively. A new grading criterion for endplate damage evaluation was developed based on Rajasekaran.S grading system in this study. Two radiologists were employed to evaluate CEP and bony vertebral endplates (VEP) using this new grading criterion and assess TEPS, independently. Cohen's kappa analysis was applied to evaluate the inter-observer agreement of endplate damage assessment between two radiologists, and the Kendall's TAU-B analysis was employed to determine the relationship between TEPS and IVD degeneration evaluated with Pfirrmann grading. RESULTS: Well structural CEP was depicted on subtracted UTE images and confirmed by high SNR (33.06±2.92) and CNR values (9.4±2.08). Qualified subtracted UTE images were used by two radiologists to evaluate the degree of CEP and VEP damage. Excellent inter-observer agreement was confirmed by high value in Cohen's kappa test (0.839, P < 0.001). Ensured by this, 138 endplates from 69 IVDs of 35 patients were classified into six grades based on the new grading criterion and TEPS of each endplate was calculated. In addition, the degeneration degree of IVDs were classified into five grades. Finally, using Kendall's TAU-B analysis, significant relationship was obtained between endplate damage related TEPS and IVD degeneration (r = 0.864, P < 0.001). CONCLUSION: Ensured by high image quality, UTE imaging might be considered an effective tool to assess CEP damage. Additionally, further calculated TEPS has shown strong positive association with IVD degeneration, suggesting that the severity of endplate damage is highly linked with the degree of IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Dor Lombar , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Dor Lombar/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Cartilagem , Vértebras Lombares/diagnóstico por imagem
8.
J Trace Elem Med Biol ; 77: 127146, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871432

RESUMO

BACKGROUND: The iron concentration increases during normal brain development and is identified as a risk factor for many neurodegenerative diseases, it is vital to monitor iron content in the brain non-invasively. PURPOSE: This study aimed to quantify in vivo brain iron concentration with a 3D rosette-based ultra-short echo time (UTE) magnetic resonance imaging (MRI) sequence. METHODS: A cylindrical phantom containing nine vials of different iron concentrations (iron (II) chloride) from 0.5 millimoles to 50 millimoles and six healthy subjects were scanned using 3D high-resolution (0.94 ×0.94 ×0.94 mm3) rosette UTE sequence at an echo time (TE) of 20 µs. RESULTS: Iron-related hyperintense signals (i.e., positive contrast) were detected based on the phantom scan, and were used to establish an association between iron concentration and signal intensity. The signal intensities from in vivo scans were then converted to iron concentrations based on the association. The deep brain structures, such as the substantia nigra, putamen, and globus pallidus, were highlighted after the conversion, which indicated potential iron accumulations. CONCLUSION: This study suggested that T1-weighted signal intensity could be used for brain iron mapping.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Meios de Contraste
9.
Radiol Med ; 128(2): 234-241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36637741

RESUMO

PURPOSE: To evaluate the added value of ultra-short echo time (UTE) and fast field echo resembling a CT using restricted echo-spacing (FRACTURE) MR sequences in the assessment of the osseous cervical spine using CT as reference. MATERIALS AND METHODS: Twenty-seven subjects underwent postmortem CT and MRI within 48 h. Datasets were anonymized and analyzed retrospectively by two radiologists. Morphological cervical spine alterations were rated on CT, UTE and FRACTURE images. Afterward, neural foraminal stenosis was graded on standard MR and again after viewing additional UTE/FRACTURE sequences. To evaluate interreader and intermodality reliability, intra-class correlation coefficients (ICC) and for stenosis grading Wilcoxon-matched-pairs testing with multiple comparison correction were calculated. RESULTS: Moderate interreader reliability (ICC = 0.48-0.71) was observed concerning morphological findings on all modalities. Intermodality reliability was good between modalities regarding degenerative vertebral and joint alterations (ICC = 0.69-0.91). Compared to CT neural stenosis grades were more often considered as nonsignificant on all analyzed MR sequences. Neural stenosis grading scores differed also significantly between specific bone imaging sequences, UTE and FRACTURE, to standard MR sequences. However, no significant difference was observed between UTE and FRACTURE sequences. CONCLUSION: Compared to CT as reference, UTE or FRACTURE sequence added to standard MR sequences can deliver comparable information on osseous cervical spine status. Both led to changes in clinically significant stenosis gradings when added to standard MR, mainly reducing the severity of neural foramina stenosis.


Assuntos
Vértebras Cervicais , Imageamento por Ressonância Magnética , Humanos , Constrição Patológica , Reprodutibilidade dos Testes , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos
10.
Magn Reson Med ; 89(2): 508-521, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161728

RESUMO

PURPOSE: This study aimed to develop a new 3D dual-echo rosette k-space trajectory, specifically designed for UTE MRI applications. The imaging of the ultra-short transverse relaxation time (uT2 ) of brain was acquired to test the performance of the proposed UTE sequence. THEORY AND METHODS: The rosette trajectory was developed based on rotations of a "petal-like" pattern in the kx -ky plane, with oscillated extensions in the kz -direction for 3D coverage. Five healthy volunteers underwent 10 dual-echo 3D rosette UTE scans with various TEs. Dual-exponential complex model fitting was performed on the magnitude data to separate uT2 signals, with the output of uT2 fraction, uT2 value, and long-T2 value. RESULTS: The 3D rosette dual-echo UTE sequence showed better performance than a 3D radial UTE acquisition. More significant signal intensity decay in white matter than gray matter was observed along with the TEs. The white matter regions had higher uT2 fraction values than gray matter (10.9% ± 1.9% vs. 5.7% ± 2.4%). The uT2 value was approximately 0.10 ms in white matter . CONCLUSION: The higher uT2 fraction value in white matter compared to gray matter demonstrated the ability of the proposed sequence to capture rapidly decaying signals.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Voluntários Saudáveis , Imageamento Tridimensional
11.
Magn Reson Med Sci ; 22(1): 117-125, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897149

RESUMO

A flow-diverter (FD) device is a well-established tool for the treatment of unruptured intracranial aneurysms. Time-of-flight (TOF) MR angiography (MRA) is widely used for postoperative assessment after the treatment with FD; however, it cannot fully visualize intra-aneurysmal and intrastent flow signals due to the magnetic susceptibility from the FD. Recently, the utility of MRA with ultra-short TE (UTE) sequence and arterial spin labeling technique in assessing the therapeutic efficacy of intracranial aneurysms treated with metallic devices has been reported, but long image acquisition time is one of the drawbacks of this method. Herein, we introduce a novel UTE MRA using the subtraction method that enables the reduction in susceptibility artifacts with a short image acquisition time.


Assuntos
Embolização Terapêutica , Aneurisma Intracraniano , Humanos , Angiografia Digital/métodos , Seguimentos , Angiografia por Ressonância Magnética/métodos , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/cirurgia , Embolização Terapêutica/métodos , Angiografia Cerebral/métodos
12.
Magn Reson Med Sci ; 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384909

RESUMO

Contrast-enhanced CT and MR angiography are widely used for follow-up of visceral artery aneurysms after coil embolization. However, potential adverse reactions to contrast agents and image deterioration due to susceptibility artifacts from the coils are major drawbacks of these modalities. Herein, we introduced a novel non-contrast-enhanced MR angiography technique using ultra-short TE combined with a modified signal targeting alternating radio frequency with asymmetric inversion slabs, which could provide a serial hemodynamic vascular image with fewer susceptibility artifacts for follow-up after coil embolization.

13.
Magn Reson Med ; 88(3): 1126-1139, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35481686

RESUMO

PURPOSE: To study the effect of field inhomogeneity distributions in trabecularized bone regions on the gradient echo (GRE) signal with short TEs and to characterize quantification errors on R2*$$ {R}_2^{\ast } $$ and proton density fat fraction (PDFF) maps when using a water-fat model with an exponential R2*$$ {R}_2^{\ast } $$ decay model at short TEs. METHODS: Field distortions were simulated based on a trabecular bone micro CT dataset. Simulations were performed for different bone volume fractions (BV/TV) and for different bone-fat composition values. A multi-TE UTE acquisition was developed to acquire multiple UTEs with random order to minimize eddy currents. The acquisition was validated in phantoms and applied in vivo in a volunteer's ankle and knee. Chemical shift encoded MRI (CSE-MRI) based on a Cartesian multi-TE GRE scan was acquired in the spine of patients with metastatic bone disease. RESULTS: Simulations showed that signal deviations from the exponential signal decay at short TEs were more prominent for a higher BV/TV. UTE multi-TE measurements reproduced in vivo the simulation-based predicted behavior. In regions with high BV/TV, the presence of field inhomogeneities induced an R2*$$ {R}_2^{\ast } $$ underestimation in trabecularized bone marrow when using CSE-MRI at 3T with a short TE. CONCLUSION: R2*$$ {R}_2^{\ast } $$ can be underestimated when using short TEs (<2 ms at 3 T) and a water-fat model with an exponential R2*$$ {R}_2^{\ast } $$ decay model in multi-echo GRE acquisitions of trabecularized bone marrow.


Assuntos
Medula Óssea , Prótons , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/patologia , Medula Óssea/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Água
14.
J Magn Reson Imaging ; 56(5): 1513-1528, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35142407

RESUMO

BACKGROUND: Pointwise encoding time reduction with radial acquisition (PETRA) magnetic resonance angiography (MRA) is useful for evaluating intracranial aneurysm recurrence, but the problem of severe background noise and low peripheral signal-to-noise ratio (SNR) remain. Deep learning could reduce noise using high- and low-quality images. PURPOSE: To develop a cycle-consistent generative adversarial network (cycleGAN)-based deep learning model to generate synthetic TOF (synTOF) using PETRA. STUDY TYPE: Retrospective. POPULATION: A total of 377 patients (mean age: 60 ± 11; 293 females) with treated intracranial aneurysms who underwent both PETRA and TOF from October 2017 to January 2021. Data were randomly divided into training (49.9%, 188/377) and validation (50.1%, 189/377) groups. FIELD STRENGTH/SEQUENCE: Ultra-short echo time and TOF-MRA on a 3-T MR system. ASSESSMENT: For the cycleGAN model, the peak SNR (PSNR) and structural similarity (SSIM) were evaluated. Image quality was compared qualitatively (5-point Likert scale) and quantitatively (SNR). A multireader diagnostic optimality evaluation was performed with 17 radiologists (experience of 1-18 years). STATISTICAL TESTS: Generalized estimating equation analysis, Friedman's test, McNemar test, and Spearman's rank correlation. P < 0.05 indicated statistical significance. RESULTS: The PSNR and SSIM between synTOF and TOF were 17.51 [16.76; 18.31] dB and 0.71 ± 0.02. The median values of overall image quality, noise, sharpness, and vascular conspicuity were significantly higher for synTOF than for PETRA (4.00 [4.00; 5.00] vs. 4.00 [3.00; 4.00]; 5.00 [4.00; 5.00] vs. 3.00 [2.00; 4.00]; 4.00 [4.00; 4.00] vs. 4.00 [3.00; 4.00]; 3.00 [3.00; 4.00] vs. 3.00 [2.00; 3.00]). The SNRs of the middle cerebral arteries were the highest for synTOF (synTOF vs. TOF vs. PETRA; 63.67 [43.25; 105.00] vs. 52.42 [32.88; 74.67] vs. 21.05 [12.34; 37.88]). In the multireader evaluation, there was no significant difference in diagnostic optimality or preference between synTOF and TOF (19.00 [18.00; 19.00] vs. 20.00 [18.00; 20.00], P = 0.510; 8.00 [6.00; 11.00] vs. 11.00 [9.00, 14.00], P = 1.000). DATA CONCLUSION: The cycleGAN-based deep learning model provided synTOF free from background artifact. The synTOF could be a versatile alternative to TOF in patients who have undergone PETRA for evaluating treated aneurysms. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 1.


Assuntos
Aneurisma Intracraniano , Angiografia por Ressonância Magnética , Idoso , Angiografia Digital/métodos , Feminino , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Razão Sinal-Ruído
15.
Eur J Radiol ; 147: 110144, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999474

RESUMO

PURPOSE: The purpose of this study was to evaluate the diagnostic performance of ultra-short echo time magnetic resonance imaging (UTE MRI) in the assessment of pulmonary arteriovenous malformation (PAVM). METHODS: Eighteen consecutive patients (mean [± standard deviation] age, 48.6 ± 16.8 years) with 46 untreated PAVMs who underwent and thin-section computed tomography (CT) and UTE MRI with a 1.5-Tesla and 3-Tesla unit were retrospectively assessed. Two radiologists evaluated the diagnostic capabilities of UTE MRI for the detection and classification of PAVMs with reference to CT. Sensitivity, specificity, and kappa statistics were calculated with reference to CT. We also compared the differences in PAVM measurements between CT and MRI. RESULTS: The sensitivity and specificity of UTE-MRI for the detection of PAVMs were 89.1% and 100%, respectively, for reader 1 and 87.0% and 100%, respectively, for reader 2. In the classification of PAVMs, inter-modality agreement in reader 1 and 2 were both substantial (κ = 0.78 and 0.69, respectively). The measurements of the PAVM feeding artery and sac on CT and MRI were strongly correlated in both readers 1 and 2 (R2 = 0.981 and 0.983, respectively). Both readers 1 and 2 slightly underestimated the diameter of the PAVM feeding artery and sac on UTE MRI (p < 0.001). CONCLUSION: This study indicates that UTE MRI is a feasible and promising modality for noninvasive assessment of PAVMs.


Assuntos
Malformações Arteriovenosas , Embolização Terapêutica , Veias Pulmonares , Adulto , Idoso , Malformações Arteriovenosas/diagnóstico por imagem , Malformações Arteriovenosas/terapia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Artéria Pulmonar/diagnóstico por imagem , Veias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos
16.
Magn Reson Med ; 87(6): 2685-2696, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35037292

RESUMO

PURPOSE: To accelerate the Pointwise Encoding Time Reduction with Radial Acquisition (PETRA) sequence using compressed sensing while preserving the image quality for high-resolution MRI of tissue with ultra-short T2∗ values. METHODS: Compressed sensing was introduced in the PETRA sequence (csPETRA) to accelerate the time-consuming single point acquisition of the k-space center data. Random undersampling was applied to achieve acceleration factors up to Acc = 32. Phantom and in vivo images of the knee joint of six volunteers were measured at 3T using csPETRA sequence with Acc = 4, 8, 12, 16, 24, and 32. Images were compared against fully sampled PETRA data (Acc = 1) for structural similarity and normalized-mean-square-error. Qualitative and semi-quantitative analyses were performed to assess the effect of the acceleration on image artifacts, image quality, and delineation of anatomical structures at the knee. RESULTS: Even at high acceleration factors of Acc = 16 no aliasing artifacts were observed, and the anatomical details were preserved compared with the fully sampled data. The normalized-mean-square-error was less than 1% for Acc = 16, in which single point imaging acquisition time was reduced from 165 to 10 s, reducing the total scan time from 7.8 to 5.2 min. Semi-quantitative analyses suggest that Acc = 16 yields comparable diagnostic quality as the fully sampled data for knee imaging at a scan time of 5.2 min. CONCLUSION: csPETRA allows for ultra-short T2∗ imaging of the knee joint in clinically acceptable scan times while maintaining the image quality of original non-accelerated PETRA sequence.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
17.
Magn Reson Med ; 87(4): 1771-1783, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34752650

RESUMO

PURPOSE: To develop a methodology to simultaneously perform single echo Dixon water-fat imaging and susceptibility-weighted imaging (SWI) based on a single echo time (TE) ultra-short echo time (UTE) (sUTE) scan to assess vertebral fractures and degenerative bone changes in the thoracolumbar spine. METHODS: A methodology was developed to solve the smoothness-constrained inverse water-fat problem to separate water and fat while removing unwanted low-frequency phase terms. Additionally, the corrected UTE phase was used for SWI. UTE imaging (TE: 0.14 ms, 3T MRI) was performed in the lumbar spine of nine patients with vertebral fractures and bone marrow edema (BME). All images were reviewed by two radiologists. Water- and fat-separated images were analyzed in comparison with short-tau inversion recovery (STIR) and with respect to BME visibility. The visibility of fracture lines and cortical outlining of the UTE magnitude images were analyzed in comparison with computed tomography. RESULTS: Unwanted phase components, dominated by the B1 phase, were removed from the UTE phase images. The rating of the diagnostic quality of BME visualization showed a high preference for the sUTE-Dixon water- and fat-separated images in comparison with STIR. The UTE magnitude images enabled better visualizing fracture lines compared with STIR and slightly better visibility of cortical outlining. With increasing SWI weighting osseous structures and fatty tissues were enhanced. CONCLUSION: The proposed sUTE-Dixon-SWI methodology allows the removal of unwanted low-frequency phases and enables water-fat separation and SWI processing from a single complex UTE image. The methodology can be used for the simultaneous assessment of vertebral fractures and BME of the thoracolumbar spine.


Assuntos
Imageamento por Ressonância Magnética , Água , Edema/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Coluna Vertebral , Tomografia Computadorizada por Raios X/métodos
18.
Acta Radiol Open ; 10(10): 20584601211057671, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34745651

RESUMO

Pulmonary arteriovenous malformation (PAVM) is a rare vascular anomaly, for which transcatheter embolization with metallic coils is the standard of care. Although detecting recanalization after embolotherapy is crucial, direct visualization of residual flow with computed tomography or magnetic resonance (MR) imaging is generally difficult due to metal artifacts. We present a case of recanalized PAVM after coil embolization detected by ultra-short echo time MR angiography using a modified signal targeting with an alternative radio frequency spin labeling technique.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33680861

RESUMO

BACKGROUND: The posterior cruciate ligament (PCL) is one of the essential stabilizers of the knee joint and it was demonstrated that its degenerative change related to the knee osteoarthritis (OA). We aimed to evaluate signal of the PCL in OA patients in comparison with healthy young and elderly volunteers using the ultra-short echo timeenhanced (UTE)-T2∗ mapping, and to validate these findings with histology. METHODS: Thirty asymptomatic volunteers, 13 young people (younger group) and 17 elderly people (elder group), and 27 patients who had undergone total knee arthroplasty (OA group) were enrolled in this study. UTE-T2∗ maps of PCL were obtained from all participants. The PCL was divided into proximal, middle, and distal parts and the UTET2∗ values obtained from each part were compared among the groups. In OA group, the sacrificed PCLs were evaluated histologically in each part corresponding to the part of UTE-T2∗ maps and compared. RESULTS: The UTE-T2∗ values in OA group were significantly higher than those in other groups except in distal part. In elder group, the UTE-T2∗ values were significantly higher than those in younger group only in the proximal part. Moreover, in OA group, the UTE-T2∗ values in proximal and middle parts were significantly higher than those in distal part. There was a moderate correlation between the UTE-T2∗ values and histological scores. CONCLUSIONS: The specific signal intensity pattern of the PCL in patients with OA was demonstrated using UTE-T2∗ mapping, and these findings were related to histological degenerated status of the PCL.

20.
Pediatr Radiol ; 51(1): 57-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860525

RESUMO

BACKGROUND: MRI of lung parenchyma is challenging because of the rapid decay of signal by susceptibility effects of aerated lung on routine fast spin-echo sequences. OBJECTIVE: To assess lung signal intensity in children on ultrashort echo-time sequences in comparison to a fast spin-echo technique. MATERIALS AND METHODS: We conducted a retrospective study of lung MRI obtained in 30 patients (median age 5 years, range 2 months to 18 years) including 15 with normal lungs and 15 with cystic fibrosis. On a fast spin-echo sequence with radial readout and an ultrashort echo-time sequence, both lungs were segmented and signal intensities were extracted. We compared lung-to-background signal ratios and histogram analysis between the two patient cohorts using non-parametric tests and correlation analysis. RESULTS: On ultrashort echo-time the lung-to-background ratio was age-dependent, ranging from 3.15 to 1.33 with high negative correlation (Rs = -0.86). Signal in posterior dependent portions of the lung was 18% and 11% higher than that of the anterior lung for age groups 0-2 and 2-18 years, respectively. The fast spin-echo sequence showed no variation of signal ratios by age or location, with a median of 0.99 (0.98-1.02). Histograms of ultrashort echo-time slices between controls and children with aggravated cystic fibrosis with mucus plugging and wall thickening exhibited significant discrepancies that differentiated between normal and pathological lungs. CONCLUSION: Signal intensity of lung on ultrashort echo-time is higher than that on fast spin-echo sequences, is age-dependent and shows a gravity-dependent anterior to posterior gradient. This signal variation appears similar to lung density described on CT.


Assuntos
Fibrose Cística , Interpretação de Imagem Assistida por Computador , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA