Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(29): 18933-18947, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990155

RESUMO

Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.

2.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343692

RESUMO

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

3.
Nano Lett ; 21(3): 1345-1351, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497229

RESUMO

Hot-electron dynamics taking place in nanostructured materials upon irradiation with fs-laser pulses has been the subject of intensive research, leading to the emerging field of ultrafast nanophotonics. However, the most common description of nonlinear interaction with ultrashort laser pulses assumes a homogeneous spatial distribution for the photogenerated carriers. Here we theoretically show that the inhomogeneous evolution of the hot carriers at the nanoscale can disclose unprecedented opportunities for ultrafast diffraction management. In particular, we design a highly symmetric plasmonic metagrating capable of a transient symmetry breaking driven by hot electrons. The subsequent power imbalance between symmetrical diffraction orders is calculated to exceed 20% under moderate (∼2 mJ/cm2) laser fluence. Our theoretical investigation also indicates that the recovery time of the symmetric configuration can be controlled by tuning the geometry of the metaatom, and can be as fast as 2 ps for electrically connected configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA