Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 24(8): 839-844, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159442

RESUMO

The 2023-2032 Planetary Science and Astrobiology Decadal Survey prioritized the Uranus Orbiter and Probe (UOP) mission concept as the next priority flagship mission. The UOP concept includes scientific studies of the Uranian moon system. Although the Uranian moons differ greatly from the ocean worlds in the Jovian and Saturnian systems, the emerging hypothesis is that some of them could at least sustain thin, potentially concentrated, oceans. Herein, we make a case that these moons are important and interesting targets of astrobiological research. Studying these worlds would provide critical astrobiological data related to their habitability, including origin, evolution, and potential death, as well as the formation and evolution of ocean worlds more broadly. There is a strong need for research that connects astrobiology to modeling and experimentation to better characterize the possible conditions of these worlds, and this will be critical in formulating and maximizing the potential science that could be done by a Uranus flagship mission.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Lua , Exobiologia/métodos , Oceanos e Mares
2.
Space Sci Rev ; 220(4): 46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873000

RESUMO

A team of Earth-based astronomical observers supporting a giant planet entry-probe event substantially enhances the scientific return of the mission. An observers' team provides spatial and temporal context, additional spectral coverage and resolution, viewing geometries that are not available from the probe or the main spacecraft, tracking, supporting data in case of a failure, calibration benchmarks, and additional opportunities for education and outreach. The capabilities of the support program can be extended by utilizing archived data. The existence of a standing group of observers facilitates the path towards acquiring Director's Discretionary Time at major telescopes, if, for example, the probe's entry date moves. The benefits of a team convened for a probe release provides enhanced scientific return throughout the mission. Finally, the types of observations and the organization of the teams described in this paper could serve as a model for flight projects in general.

3.
Space Sci Rev ; 220(1): 15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343766

RESUMO

A major motivation for multiple atmospheric probe measurements at Uranus is the understanding of dynamic processes that create and maintain spatial variation in thermal structure, composition, and horizontal winds. But origin questions-regarding the planet's formation and evolution, and conditions in the protoplanetary disk-are also major science drivers for multiprobe exploration. Spatial variation in thermal structure reveals how the atmosphere transports heat from the interior, and measuring compositional variability in the atmosphere is key to ultimately gaining an understanding of the bulk abundances of several heavy elements. We review the current knowledge of spatial variability in Uranus' atmosphere, and we outline how multiple probe exploration would advance our understanding of this variability. The other giant planets are discussed, both to connect multiprobe exploration of those atmospheres to open questions at Uranus, and to demonstrate how multiprobe exploration of Uranus itself is motivated by lessons learned about the spatial variation at Jupiter, Saturn, and Neptune. We outline the measurements of highest value from miniature secondary probes (which would complement more detailed investigation by a larger flagship probe), and present the path toward overcoming current challenges and uncertainties in areas including mission design, cost, trajectory, instrument maturity, power, and timeline.

4.
Space Sci Rev ; 219(8): 65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869526

RESUMO

The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.

5.
J Geophys Res Planets ; 127(6): e2022JE007189, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35865671

RESUMO

We present a reanalysis (using the Minnaert limb-darkening approximation) of visible/near-infrared (0.3-2.5 µm) observations of Uranus and Neptune made by several instruments. We find a common model of the vertical aerosol distribution i.e., consistent with the observed reflectivity spectra of both planets, consisting of: (a) a deep aerosol layer with a base pressure >5-7 bar, assumed to be composed of a mixture of H2S ice and photochemical haze; (b) a layer of photochemical haze/ice, coincident with a layer of high static stability at the methane condensation level at 1-2 bar; and (c) an extended layer of photochemical haze, likely mostly of the same composition as the 1-2-bar layer, extending from this level up through to the stratosphere, where the photochemical haze particles are thought to be produced. For Neptune, we find that we also need to add a thin layer of micron-sized methane ice particles at ∼0.2 bar to explain the enhanced reflection at longer methane-absorbing wavelengths. We suggest that methane condensing onto the haze particles at the base of the 1-2-bar aerosol layer forms ice/haze particles that grow very quickly to large size and immediately "snow out" (as predicted by Carlson et al. (1988), https://doi.org/10.1175/1520-0469(1988)045<2066:CMOTGP>2.0.CO;2), re-evaporating at deeper levels to release their core haze particles to act as condensation nuclei for H2S ice formation. In addition, we find that the spectral characteristics of "dark spots", such as the Voyager-2/ISS Great Dark Spot and the HST/WFC3 NDS-2018, are well modelled by a darkening or possibly clearing of the deep aerosol layer only.

6.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782127

RESUMO

Nondipolar magnetic fields exhibited at Uranus and Neptune may be derived from a unique geometry of their icy mantle with a thin convective layer on top of a stratified nonconvective layer. The presence of superionic H2O and NH3 has been thought as an explanation to stabilize such nonconvective regions. However, a lack of experimental data on the physical properties of those superionic phases has prevented the clarification of this matter. Here, our Brillouin measurements for NH3 show a two-stage reduction in longitudinal wave velocity (V p) by ∼9% and ∼20% relative to the molecular solid in the temperature range of 1,500 K and 2,000 K above 47 GPa. While the first V p reduction observed at the boundary to the superionic α phase was most likely due to the onset of the hydrogen diffusion, the further one was likely attributed to the transition to another superionic phase, denoted γ phase, exhibiting the higher diffusivity. The reduction rate of V p in the superionic γ phase, comparable to that of the liquid, implies that this phase elastically behaves almost like a liquid. Our measurements show that superionic NH3 becomes convective and cannot contribute to the internal stratification.

7.
J Geophys Res Planets ; 126(12): e2021JE006956, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35859709

RESUMO

The Galileo mission to Jupiter discovered magnetic signatures associated with hidden subsurface oceans at the moons Europa and Callisto using the phenomenon of magnetic induction. These induced magnetic fields originate from electrically conductive layers within the moons and are driven by Jupiter's strong time-varying magnetic field. The ice giants and their moons are also ideal laboratories for magnetic induction studies. Both Uranus and Neptune have a strongly tilted magnetic axis with respect to their spin axis, creating a dynamic and strongly variable magnetic field environment at the orbits of their major moons. Although Voyager 2 visited the ice giants in the 1980s, it did not pass close enough to any of the moons to detect magnetic induction signatures. However, Voyager 2 revealed that some of these moons exhibit surface features that hint at recent geologically activity, possibly associated with subsurface oceans. Future missions to the ice giants may therefore be capable of discovering subsurface oceans, thereby adding to the family of known "ocean worlds" in our Solar System. Here, we assess magnetic induction as a technique for investigating subsurface oceans within the major moons of Uranus. Furthermore, we establish the ability to distinguish induction responses created by different interior characteristics that tie into the induction response: ocean thickness, conductivity and depth, and ionospheric conductance. The results reported here demonstrate the possibility of single-pass ocean detection and constrained characterization within the moons of Miranda, Ariel, and Umbriel, and provide guidance for magnetometer selection and trajectory design for future missions to Uranus.

8.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190479, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161852

RESUMO

The Voyager 2 flybys of Uranus and Neptune revealed the first multipolar planetary magnetic fields and highlighted how much we have yet to learn about ice giant planets. In this review, we summarize observations of Uranus' and Neptune's magnetic fields and place them in the context of other planetary dynamos. The ingredients for dynamo action in general, and for the ice giants in particular, are discussed, as are the factors thought to control magnetic field strength and morphology. These ideas are then applied to Uranus and Neptune, where we show that no models are yet able to fully explain their observed magnetic fields. We then propose future directions for missions, modelling, experiments and theory necessary to answer outstanding questions about the dynamos of ice giant planets, both within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

9.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190482, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161854

RESUMO

All four giant planets are encircled by distinctive systems of rings and small, inner satellites. These all reside within or near their central planet's Roche limit, the rough boundary within which bodies held together by self-gravity will be disrupted by tidal forces. However, the similarities of the four ring-moon systems end here; in most other regards, they are remarkably diverse. We study these systems for three key reasons: (1) for the information they reveal about the properties, history and ongoing evolution of the planetary systems of which they are a part; (2) as dynamical analogues for other astrophysical systems such as protoplanetary disks; and (3) for the wealth of fascinating properties and origin scenarios that make them worthy of study in their own right. The inner Uranus system is characterized by 10 narrow rings, some quite dense, as well as a variety of more tenuous structures. These are accompanied by 13 known moons all orbiting interior to Miranda. Nine of these, Bianca through Perdita, comprise the most densely packed set of moons in the solar system, with orbits so close that their interactions appear to drive chaos over time scales approximately 106 years. Neptune has five named rings, all optically thin, interleaved with seven inner moons. The most notable feature is a set of arcs embedded within the Adams ring; two of these arcs have been stable for time scales of decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

10.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190485, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161855

RESUMO

More than 30 years have passed since the Voyager 2 flybys of Uranus and Neptune. This paper outlines a range of lessons learned from Voyager, broadly grouped into 'process, planning and people.' In terms of process, we must be open to new concepts, whether new instrument technologies, new propulsion systems or operational modes. Examples from recent decades that could open new vistas in the exploration of the deep outer Solar System include the Cassini Resource Exchange and the 'sleep' mode from the New Horizons mission. Planning is crucial: mission gaps that last over three decades leave much scope for evolution both in mission development and in the targets themselves. The science is covered in other papers in this issue, but this paper addresses the structure of the US Planetary Decadal Surveys, with a specific urging to move from a 'destination-based' organization to a structure based on fundamental science. Coordination of distinct and divergent international planning timelines brings both challenges and opportunity. Complexity in the funding and political processes is amplified when multiple structures must be navigated; but the science is enriched by the diversity of international perspectives, as were represented at the Ice Giant discussion meeting that motivated this review. Finally, the paper turns to people: with generational-length gaps between missions, continuity in knowledge and skills requires careful attention to people. Lessons for the next generation of voyagers include: how to lead and inspire; how to develop the perspective to see their missions through decades-long development phases; and cultivation of strategic thinking, altruism and above all, patience. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

11.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190474, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161856

RESUMO

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets' internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

12.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190473, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161857

RESUMO

The international planetary science community met in London in January 2020, united in the goal of realizing the first dedicated robotic mission to the distant ice giants, Uranus and Neptune, as the only major class of solar system planet yet to be comprehensively explored. Ice-giant-sized worlds appear to be a common outcome of the planet formation process, and pose unique and extreme tests to our understanding of exotic water-rich planetary interiors, dynamic and frigid atmospheres, complex magnetospheric configurations, geologically-rich icy satellites (both natural and captured), and delicate planetary rings. This article introduces a special issue on ice giant system exploration at the start of the 2020s. We review the scientific potential and existing mission design concepts for an ambitious international partnership for exploring Uranus and/or Neptune in the coming decades. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

13.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20200102, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161858

RESUMO

Newly processed global imaging and topographic mapping of Uranus's five major satellites reveal differences and similarities to mid-sized satellites at Saturn and Pluto. Three modes of internal heat redistribution are recognized. The broad similarity of Miranda's three oval resurfacing zones to those mapped on Enceladus and (subtly) on Dione are likely due to antipodal diapiric upwelling. Conversely, break-up and foundering of crustal blocks accompanied by extensive (cryo)volcanism is the dominant mode on both Charon and Ariel. Titania's fault network finds parallels on Rhea, Dione, Tethys and possibly Oberon. Differences in the geologic style of resurfacing in the satellite systems (e.g. plains on Charon, Dione, Tethys and perhaps Titania versus ridges on Miranda and Ariel) may be driven by differences in ice composition. Surface processes such as volatile transport may also be indicated by bright and dark materials on Oberon, Umbriel and Charon. The more complete and higher quality observations of the Saturnian and Plutonian mid-sized icy satellites by Cassini and New Horizons reveal a wealth of features and phenomena that cannot be perceived in the more limited Voyager coverage of the Uranian satellites, harbingers of many discoveries awaiting us on a return to Uranus. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

14.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190476, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161859

RESUMO

The ice giants Uranus and Neptune have hydrogen-based atmospheres with several constituents that condense in their cold upper atmospheres. A small number of bright cloud systems observed in both planets are good candidates for moist convective storms, but their observed properties (size, temporal scales and cycles of activity) differ from moist convective storms in the gas giants. These clouds and storms are possibly due to methane condensation and observations also suggest deeper clouds of hydrogen sulfide (H2S) at depths of a few bars. Even deeper, thermochemical models predict clouds of ammonia hydrosulfide (NH4SH) and water at pressures of tens to hundreds of bars, forming extended deep weather layers. Because of hydrogen's low molecular weight and the high abundance of volatiles, their condensation imposes a strongly stabilizing vertical gradient of molecular weight larger than the equivalent one in Jupiter and Saturn. The resulting inhibition of vertical motions should lead to a moist convective regime that differs significantly from the one occurring on nitrogen-based atmospheres like those of Earth or Titan. As a consequence, the thermal structure of the deep atmospheres of Uranus and Neptune is not well understood. Similar processes might occur at the deep water cloud of Jupiter in Saturn, but the ice giants offer the possibility to study these physical aspects in the upper methane cloud layer. A combination of orbital and in situ data will be required to understand convection and its role in atmospheric dynamics in the ice giants, and by extension, in hydrogen atmospheres including Jupiter, Saturn and giant exoplanets. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

15.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20200222, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161860

RESUMO

Robotic space exploration to the outer solar system is difficult and expensive and the space science community works inventively and collaboratively to maximize the scientific return of missions. A mission to either of our solar system Ice Giants, Uranus and Neptune, will provide numerous opportunities to address high-level science objectives relevant to multiple disciplines and deliberate cross-disciplinary mission planning should ideally be woven in from the start. In this review, we recount past successes as well as (NASA-focused) challenges in performing cross-disciplinary science from robotic space exploration missions and detail the opportunities for broad-reaching science objectives from potential future missions to the Ice Giants. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

16.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190475, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161861

RESUMO

The properties of ice giant normal mode oscillations, including their periods, spatial structure, stratospheric amplitudes and relative influence on the external gravity field, are surveyed for the purpose of formulating the best strategy for their eventual detection. Measurement requirements for detecting a normal mode's periodic pressure and temperature variations, including a possible stratospheric signal, and its effect on the external gravity field, are discussed in terms of its radial velocity amplitude at the 1 bar pressure level. It is found that for reasonable amplitudes, detection of the pressure and temperature variations of ice giant normal modes presents an extraordinary technical challenge. The prospects for detecting their gravitational influence on an orbiting spacecraft are more promising, with requirements that lie within the range of current technology. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

17.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190478, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161864

RESUMO

We review the current understanding of the upper atmospheres of Uranus and Neptune, and explore the upcoming opportunities available to study these exciting planets. The ice giants are the least understood planets in the solar system, having been only visited by a single spacecraft, in 1986 and 1989, respectively. The upper atmosphere plays a critical role in connecting the atmosphere to the forces and processes contained within the magnetic field. For example, auroral current systems can drive charged particles into the atmosphere, heating it by way of Joule heating. Ground-based observations of H3+ provides a powerful remote diagnostic of the physical properties and processes that occur within the upper atmosphere, and a rich dataset exists for Uranus. These observations span almost three decades and have revealed that the upper atmosphere has continuously cooled between 1992 and 2018 at about 8 K/year, from approximately 750 K to approximately 500 K. The reason for this trend remain unclear, but could be related to seasonally driven changes in the Joule heating rates due to the tilted and offset magnetic field, or could be related to changing vertical distributions of hydrocarbons. H3+ has not yet been detected at Neptune, but this discovery provides low-hanging fruit for upcoming facilities such as the James Webb Space Telescope and the next generation of 30 m telescopes. Detecting H3+ at Neptune would enable the characterization of its upper atmosphere for the first time since 1989. To fully understand the ice giants, we need dedicated orbital missions, in the same way the Cassini spacecraft explored Saturn. Only by combining in situ observations of the magnetic field with in-orbit remote sensing can we get the complete picture of how energy moves between the atmosphere and the magnetic field. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

18.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190488, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161865

RESUMO

Future missions to an ice giant planet, especially orbital missions, are technologically challenging. But with one exception, radioisotope power sources (RPSs), the technologies that would enable such missions are currently available. RPSs are not a new technology, but devices used in the past that are appropriate to an ice giant mission are no longer available without engineering development work (currently unfunded), and it is uncertain whether the new NASA unit under development will be available for flight in time to take advantage of the best transfer trajectories of the next 15 years. This paper describes technologies already in hand that enable an ice giant mission, but for them to be useful they must be maintained. If an enabling technology is lost a replacement must be developed, potentially impacting the cost and schedule of a mission. In addition to the enabling technologies, there are a number of technologies that, while not enabling, could greatly enhance the science return and science value of a mission, making the programmatic aspects of approval an easier task and the funding of those development tasks a high priority. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

19.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190477, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161866

RESUMO

Comparatively little is known about atmospheric chemistry on Uranus and Neptune, because remote spectral observations of these cold, distant 'Ice Giants' are challenging, and each planet has only been visited by a single spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is expected to control the composition in the deeper, hotter regions of the atmosphere on both planets, but disequilibrium chemical processes such as transport-induced quenching and photochemistry alter the composition in the upper atmospheric regions that can be probed remotely. Surprising disparities in the abundance of disequilibrium chemical products between the two planets point to significant differences in atmospheric transport. The atmospheric composition of Uranus and Neptune can provide critical clues for unravelling details of planet formation and evolution, but only if it is fully understood how and why atmospheric constituents vary in a three-dimensional sense and how material coming in from outside the planet affects observed abundances. Future mission planning should take into account the key outstanding questions that remain unanswered about atmospheric chemistry on Uranus and Neptune, particularly those questions that pertain to planet formation and evolution, and those that address the complex, coupled atmospheric processes that operate on Ice Giants within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

20.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190480, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161869

RESUMO

The ice giant planets provide some of the most interesting natural laboratories for studying the influence of large obliquities, rapid rotation, highly asymmetric magnetic fields and wide-ranging Alfvénic and sonic Mach numbers on magnetospheric processes. The geometries of the solar wind-magnetosphere interaction at the ice giants vary dramatically on diurnal timescales due to the large tilt of the magnetic axis relative to each planet's rotational axis and the apparent off-centred nature of the magnetic field. There is also a seasonal effect on this interaction geometry due to the large obliquity of each planet (especially Uranus). With in situ observations at Uranus and Neptune limited to a single encounter by the Voyager 2 spacecraft, a growing number of analytical and numerical models have been put forward to characterize these unique magnetospheres and test hypotheses related to the magnetic structures and the distribution of plasma observed. Yet many questions regarding magnetospheric structure and dynamics, magnetospheric coupling to the ionosphere and atmosphere, and potential interactions with orbiting satellites remain unanswered. Continuing to study and explore ice giant magnetospheres is important for comparative planetology as they represent critical benchmarks on a broad spectrum of planetary magnetospheric interactions, and provide insight beyond the scope of our own Solar System with implications for exoplanet magnetospheres and magnetic reversals. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA