Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Acta Physiol (Oxf) ; 240(8): e14186, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837572

RESUMO

AIM: Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS: Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS: Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS: These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.


Assuntos
Hipocampo , Plasticidade Neuronal , Neurônios , Sinapses , ATPases Vacuolares Próton-Translocadoras , Animais , Hipocampo/metabolismo , Hipocampo/citologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Camundongos , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Sinapses/metabolismo , Sinapses/fisiologia , Células Cultivadas , Autofagia/fisiologia , Lisossomos/metabolismo
2.
Biomed Pharmacother ; 171: 116068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176129

RESUMO

Cirrhosis is a liver disease that leads to increased intrahepatic resistance, portal hypertension (PH), and splanchnic hyperemia resulting in ascites, variceal bleeding, and hepatorenal syndrome. Terlipressin, a prodrug that converts to a short half-life vasopressin receptor 1 A (V1a) full agonist [8-Lys]-Vasopressin (LVP), is an intravenous treatment for PH complications, but hyponatremia and ischemic side effects require close monitoring. We developed PHIN-214 which converts into PHIN-156, a more biologically stable V1a partial agonist. PHIN-214 enables once-daily subcutaneous administration without causing ischemia or tissue necrosis and has a 10-fold higher therapeutic index than terlipressin in healthy rats. As V1a partial agonists, PHIN-214 and PHIN-156 exhibited maximum activities of 28 % and 42 % of Arginine vasopressin (AVP), respectively. The potency of PHIN-156 and LVP relative to AVP is comparable for V1a (5.20 and 1.65 nM, respectively) and V1b (102 and 115 nM, respectively) receptors. However, the EC50 of PHIN-156 to the V2 receptor was 26-fold higher than that of LVP, indicating reduced potential for dilutional hyponatremia via V2 agonism compared to terlipressin/LVP. No significant off-target binding to 87 toxicologically relevant receptors were observed when evaluated in vitro at 10 µM concentration. In bile duct ligated rats with PH, subcutaneous PHIN-214 reduced portal pressure by 13.4 % ± 3.4 in 4 h. These collective findings suggest that PHIN-214 could be a novel pharmacological treatment for patients with PH, potentially administered outside of hospital settings, providing a safe and convenient alternative for managing PH and its complications.


Assuntos
Varizes Esofágicas e Gástricas , Hiponatremia , Humanos , Ratos , Animais , Receptores de Vasopressinas/metabolismo , Terlipressina , Hemorragia Gastrointestinal , Vasopressinas , Arginina Vasopressina/farmacologia
3.
Seizure ; 116: 81-86, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37574426

RESUMO

PURPOSE: ATP6V1A variants have been identified in patients with highly variable phenotypes such as autosomal dominant epileptic encephalopathy and autosomal recessive cutis laxa. However, the mechanism underlying phenotype variation is unknown. We screened ATP6V1A variants in patients with epilepsy and analyzed the genotype-phenotype correlation to explain the mechanism underlying phenotypic variations. METHODS: We performed trio-based whole-exome sequencing in people with epilepsy without acquired causes. All previously reported ATP6V1A variants were systematically retrieved from the HGMD and PubMed databases. RESULTS: Three novel de novo ATP6V1A variants, including c.749G>C/p.Gly250Ala, c.782A>G/p.Gln261Arg, and c.1103T>C/p.Met368Thr, were identified in three unrelated cases with childhood focal (partial) epilepsy. None of the variants were listed in any public population database and evaluated as likely pathogenic according to the criteria of the American College of Medical Genetics and Genomics (ACMG). All persons showed good responses to anti-seizure medication and psychomotor development was normal. Further analysis showed that monoallelic missense variants were associated with epilepsy with variable severity, whereas biallelic variants resulted in developmental abnormalities of multisystem that may result in early lethality. CONCLUSION: Childhood focal epilepsy with favorable outcome was probably a novel phenotype of ATP6V1A. ATP6V1A variants are associated with a range of phenotypes that correlate with genotypes. The relationship between phenotype severity and the genotype (genetic impairment) of ATP6V1A variants helps explain the phenotypic variations.


Assuntos
Epilepsias Parciais , Epilepsia , ATPases Vacuolares Próton-Translocadoras , Criança , Humanos , Epilepsia/genética , Genótipo , Fenótipo , Estudos de Associação Genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética
4.
Front Endocrinol (Lausanne) ; 14: 1176199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790608

RESUMO

The diabetic kidney disease (DKD) is the major cause of the chronic kidney disease (CKD). Enhanced plasma vasopressin (VP) levels have been associated with the pathophysiology of DKD and CKD. Stimulation of VP release in DKD is caused by glucose-dependent reset of the osmostat leading to secondary pathophysiologic effects mediated by distinct VP receptor types. VP is a stress hormone exhibiting the antidiuretic action in the kidney along with broad adaptive effects in other organs. Excessive activation of the vasopressin type 2 (V2) receptor in the kidney leads to glomerular hyperfiltration and nephron loss, whereas stimulation of vasopressin V1a or V1b receptors in the liver, pancreas, and adrenal glands promotes catabolic metabolism for energy mobilization, enhancing glucose production and aggravating DKD. Increasing availability of selective VP receptor antagonists opens new therapeutic windows separating the renal and extra-renal VP effects for the concrete applications. Improved understanding of these paradigms is mandatory for further drug design and translational implementation. The present concise review focuses on metabolic effects of VP affecting DKD pathophysiology.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Vasopressinas/metabolismo , Receptores de Vasopressinas/metabolismo , Glucose
5.
Calcif Tissue Int ; 113(6): 618-629, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37878026

RESUMO

Osteoporosis disproportionately affects older women, yet gender differences in human osteoblasts remain unexplored. Identifying mechanisms and biomarkers of osteoporosis will enable the development of preventative and therapeutic approaches. Transcriptome data of 187 osteoblast samples from men and women were compared. Differentially expressed genes (DEGs) were identified, and weighted gene co-expression network analysis (WGCNA) was used to discover co-expressed modules. Enrichment analysis was performed to annotate DEGs. Preservation analysis determined whether modules and pathways were similar between genders. Blood methylation, transcriptome data, mouse phenotype data, and drug treatment data were utilized to identify key osteoporosis genes. We identified 1460 DEGs enriched in immune response, neurogenesis, and GWAS osteoporosis-related genes. WGCNA uncovered 8 modules associated with immune response, development, collagen metabolism, mitochondrion, and amino acid synthesis. Preservation analysis indicated modules and pathways were generally similar between genders. Incorporating GWAS and mouse phenotype data revealed 9 key genes, including GMDS, SMOC2, SASH1, MMP2, AHCYL1, ARRDC2, IGHMBP2, ATP6V1A, and CTSK. These genes were differentially methylated in patient blood and differentiated high and low bone mineral density patients in pre- and postmenopausal women. Denosumab treatment in postmenopausal women down-regulated 6 key genes, up-regulated T cell proportions, and down-regulated fibroblast proportion. qRT-PCR was used to confirm the genes in postmenopausal women. We identified 9 key osteoporosis genes by comparing the transcriptome of osteoblasts in women and men. Our findings' clinical implications were confirmed by multi-omics data and qRT-PCR, and our study provides novel biomarkers and therapeutic targets for osteoporosis diagnosis and treatment.


Assuntos
Osteoporose , Transcriptoma , Humanos , Feminino , Masculino , Animais , Camundongos , Idoso , Osteoporose/genética , Osteoporose/metabolismo , Perfilação da Expressão Gênica , Biomarcadores , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
6.
Clin Neurol Neurosurg ; 233: 107956, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37729800

RESUMO

Epilepsy is one of the most common disorders in children, with an incidence rate of approximately 5%. Although an increasing number of genes have been demonstrated to be pathogenic factors in epilepsy, evidence for a potential pathogenic role of ATP6V1A remains limited. Herein, the clinical and genetic data of a 5-year-old boy who experienced seizures at 9 months of age are collected. Genetic variants are screened using whole-exome sequencing (WES), and the effects of the candidate variants are further validated at both the RNA and protein levels. WES reveals a heterozygous variant [NM_001690.4: c .1132 C>T, p.Leu378Phe] of the ATP6V1A gene. This variant is not reported in the public database, but is predicted to be deleterious by multiple software packages, and classified as a variant of unknown significance following the American College of Medical Genetics and Genomics guidelines. Quantitative PCR and western blotting further confirm its down-regulatory role in both the RNA and protein expression of ATP6V1A. This case report confirms the pathogenicity of ATP6V1A in epilepsy with solid experimental evidence, thereby expanding the phenotype spectrum of ATP6V1A variants. More importantly, we show that seizures triggered by ATP6V1A variants could be controlled by Levetiracetam, crucially rescuing the development of the patient.


Assuntos
Epilepsia , ATPases Vacuolares Próton-Translocadoras , Pré-Escolar , Humanos , Masculino , População do Leste Asiático , Epilepsia/genética , Epilepsia/patologia , Mutação , Linhagem , RNA , Convulsões , ATPases Vacuolares Próton-Translocadoras/genética , Lactente
7.
Biomed Pharmacother ; 165: 115116, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418980

RESUMO

The vasopressin system has emerged as a therapeutic focus for lowering portal hypertension and reducing splanchnic vasodilation in patients with refractory ascites. Clinically available vasopressin agonists are limited by preferential selectivity for V1 receptors that also have steep concentration-response curves with potential risks of excess vasoconstriction and/or complete antidiuretic effects. OCE-205 is a novel, selective, partial V1a receptor agonist with mixed agonist/antagonist activity and no V2 receptor activation at therapeutic doses. We carried out two studies assessing the in vivo effects of OCE-205 in different rat models of cirrhosis and ascites. In a carbon tetrachloride rat cirrhosis model, OCE-205 administration produced a marked reduction in portal hypertension and hyperaldosteronism, along with robust diuretic and natriuretic effects. These effects were accompanied by marked decreases in ascites volume, with three of five animals experiencing total mobilization of ascites. There was no evidence of fluid overload or sodium or water retention, confirming OCE-205's lack of V2 receptor activity. In a second, corroborative study using a bile duct ligation rat model of ascites, OCE-205 produced significant decreases in ascites volume and body weight and a significant increase in urine volume versus vehicle. Urine sodium excretion increased significantly after the first administration of OCE-205 relative to vehicle; however, repeat administration over 5 days did not lead to hyponatremia. Thus, in separate in vivo models, the mixed agonist/antagonist OCE-205 demonstrated relevant and expected endpoint findings consistent with its known mechanism of action and in vitro pharmacology without apparent unwanted effects or nonspecific toxicities.


Assuntos
Hiperaldosteronismo , Hipertensão Portal , Ratos , Animais , Diuréticos/uso terapêutico , Natriuréticos , Ascite/tratamento farmacológico , Ascite/metabolismo , Vasopressinas/metabolismo , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Sódio/metabolismo , Receptores de Vasopressinas , Hipertensão Portal/tratamento farmacológico , Hipertensão Portal/metabolismo , Hiperaldosteronismo/complicações
8.
Respir Physiol Neurobiol ; 314: 104087, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269889

RESUMO

Vasopressin (AVP) acts as a neurotransmitter and its activity can potentiate respiratory activity. Hypoglossal (XII) motoneurons that innervate the tongue express V1a vasopressin receptors, which are excitatory. Therefore, we hypothesized that V1a receptor activation at XII motoneurons would potentiate inspiratory bursting. We developed this study to determine whether AVP can potentiate inspiratory bursting in rhythmic medullary slice preparations in neonatal (postnatal, P0-5) mice. Bath or local application of AVP potentiated inspiratory bursting compared to baseline XII inspiratory burst amplitude. Antagonizing V1a receptors revealed significant attenuation of the AVP-mediated potentiation of inspiratory bursting, while antagonism of oxytocin receptors (at which AVP has similar binding affinity) revealed a trend to attenuate AVP-mediated potentiation of inspiratory bursting. Finally, we discovered that the AVP-mediated potentiation of inspiratory bursting increases significantly with postnatal maturation from P0-5. Overall, these data support that AVP potentiates inspiratory bursting directly at XII motoneurons.


Assuntos
Arginina Vasopressina , Nervo Hipoglosso , Animais , Camundongos , Arginina Vasopressina/farmacologia , Arginina Vasopressina/metabolismo , Animais Recém-Nascidos , Nervo Hipoglosso/fisiologia , Neurônios Motores/fisiologia , Vasopressinas/metabolismo
9.
Expert Opin Ther Pat ; 33(5): 385-395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37226495

RESUMO

INTRODUCTION: Arginine-vasopressin hormone (AVP) is a key regulator in many essential physiological processes. The effect of AVP is mediated through three receptors within the body, these are the G protein-coupled vasopressin receptors, namely V1a, V1b (also called V3), and V2. Numerous studies investigated the role of these receptors in certain pathological conditions; therefore, stimulation or inhibition of these receptors may be a treatment option in these diseases. AREAS COVERED: In this manuscript, the authors summarize recent patent activity (2018-2022) associated with vasopressin receptor antagonists (selective V1a or V2, and dual-acting V1a/V2), focusing mostly on chemical structures, their modifications, and potential clinical applications. Patent search was carried out using SciFinder, Espacenet, Patentscope, Cortellis Competitive Intelligence, and Derwent Innovation databases. EXPERT OPINION: In recent years, vasopressin receptor antagonists have been in the spotlight of drug discovery, especially V1a selective molecules. Publishing balovaptan as a possible treatment for autism spectrum disorder (ASD), greatly increased the interest in CNS-acting vasopressin antagonists. In addition, peripherally active selective V2 and dual-acting V1a/V2 antagonists have also been developed. Although clinical trials were unsuccessful in many cases, there is still potential in the research of vasopressin receptor antagonists as shown by several currently ongoing clinical trials.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Patentes como Assunto , Antagonistas dos Receptores de Hormônios Antidiuréticos/química , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Desenvolvimento de Medicamentos , Pesquisa/tendências , Ensaios Clínicos como Assunto , Humanos , Receptores de Vasopressinas/metabolismo
10.
Mol Cell Endocrinol ; 568-569: 111913, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990198

RESUMO

Podocyte injury is a characteristic feature of diabetic nephropathy (DN). The secretion of exosomes in podocytes increases significantly in DN; however, the precise mechanisms remain poorly understood. Here, we demonstrated that Sirtuin1 (Sirt1) was significantly downregulated in podocytes in DN, which correlated negatively with increased exosome secretion. Similar results were observed in vitro. We found that lysosomal acidification in podocytes following high glucose administration was markedly inhibited, resulting in the decreased lysosomal degradation of multivesicular bodies. Mechanistically, we indicated that loss of Sirt1 contributed to the inhibited lysosomal acidification by decreasing the expression of the A subunit of the lysosomal vacuolar-type H+ ATPase proton pump (ATP6V1A) in podocytes. Overexpression of Sirt1 significantly improved lysosomal acidification with increased expression of ATP6V1A and inhibited exosome secretion. These findings suggest that dysfunctional Sirt1-mediated lysosomal acidification is the exact mechanism of increased secretion of exosomes in podocytes in DN, providing insights into potential therapeutic strategies for preventing DN progression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Podócitos , Humanos , Podócitos/metabolismo , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Exossomos/metabolismo , Lisossomos/metabolismo , Concentração de Íons de Hidrogênio , Diabetes Mellitus/metabolismo
11.
J Extracell Vesicles ; 12(2): e12310, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36748335

RESUMO

Tumour cells under hypoxia tend to modulate the number and contents of extracellular vesicles (EVs) to regulate the tumour microenvironment (TME) and thus promote tumour progression. However, the mechanism of how hypoxia influences the secretion of EVs remains to be elucidated. Here, we confirm the increased production of EVs in head and neck squamous cell carcinoma (HNSCC) cells under hypoxia, where endosome-derived EVs are the main subtype affected by insufficient O2 . The accumulation of hypoxia-inducible factor-1α (HIF-1α) under hypoxia directly downregulates the expression of ATP6V1A, which is pivotal to maintain the homeostasis of lysosomes. Subsequently, impaired lysosomal degradation contributes to the reduced fusion of multivesicular bodies (MVBs) with lysosomes and enables the secretion of intraluminal vesicles (ILVs) as EVs. These findings establish a HIF-1α-regulated lysosomal dysfunction-EV release axis and provide an exquisite framework to better understand EV biogenesis.


Assuntos
Vesículas Extracelulares , Neoplasias de Cabeça e Pescoço , Subunidade alfa do Fator 1 Induzível por Hipóxia , ATPases Vacuolares Próton-Translocadoras , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Homeostase , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral , ATPases Vacuolares Próton-Translocadoras/metabolismo
12.
J Pathol ; 260(1): 17-31, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36715683

RESUMO

Macropinocytosis is an effective strategy to mitigate nutrient starvation. It can fuel cancer cell growth in nutrient-limited conditions. However, whether and how macropinocytosis contributes to the rapid proliferation of hepatocellular carcinoma cells, which frequently experience an inadequate nutrient supply, remains unclear. Here, we demonstrated that nutrient starvation strongly induced macropinocytosis in some hepatocellular carcinoma cells. It allowed the cells to acquire extracellular nutrients and supported their energy supply to maintain rapid proliferation. Furthermore, we found that the phospholipid flippase ATP9A was critical for regulating macropinocytosis in hepatocellular carcinoma cells and that high ATP9A levels predicted a poor outcome for patients with hepatocellular carcinoma. ATP9A interacted with ATP6V1A and facilitated its transport to the plasma membrane, which promoted plasma membrane cholesterol accumulation and drove RAC1-dependent macropinocytosis. Macropinocytosis inhibitors significantly suppressed the energy supply and proliferation of hepatocellular carcinoma cells characterised by high ATP9A expression under nutrient-limited conditions. These results have revealed a novel mechanism that overcomes nutrient starvation in hepatocellular carcinoma cells and have identified the key regulator of macropinocytosis in hepatocellular carcinoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Membrana Celular , Neoplasias Hepáticas/metabolismo , Nutrientes , Fosfolipídeos/metabolismo
13.
J Neuroendocrinol ; 35(11): e13202, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36283814

RESUMO

Homeostatic challenges may alter the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. In the present study, we identify direct projections from the hypothalamic supraoptic nucleus to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization with probes for pituitary adenylate cyclase-activating polypeptide (PACAP), as well as vesicular glutamate transporter (VGLUT)1, VGLUT2, V1a and V1b, revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 h, WD48) increased sociability compared to euhydrated subjects, as assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48 + 3CST. These regions strongly expressed PAC1 mRNA. Microinjections of arginine vasopressin (AVP) into the NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that, during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior.


Assuntos
Neocórtex , Núcleo Supraóptico , Humanos , Ratos , Animais , Núcleo Supraóptico/metabolismo , Arginina Vasopressina/metabolismo , Bulbo Olfatório , Neocórtex/metabolismo , Ratos Wistar , Vasopressinas/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Comportamento Social , Homeostase , Água/metabolismo
14.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35675510

RESUMO

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Espasmos Infantis , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Atrofia , Criança , Homeostase , Humanos , Lactente , Lisossomos , Fenótipo
15.
Oncol Lett ; 23(2): 60, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34992692

RESUMO

Taxanes are important drugs used in the treatment of breast cancer; however, some cancer types are taxane-resistant. The aim of the present study was to investigate the underlying mechanisms of taxane resistance using whole-exome sequencing (WES). Six patients with breast cancer whose tumors responded well to anthracycline treatment but grew rapidly during neoadjuvant taxane-based chemotherapy, were included in the present study. WES of samples from these patients was carried out to identify somatic mutations of candidate genes thought to affect taxane resistance, and the candidate proteins were structurally modeled. The mRNA and protein expression levels of these candidate genes in other breast cancers treated with taxanes were also examined. Nine variants common to all six patients were identified and two of these [R552P in V-type proton ATPase catalytic subunit A (ATP6V1A) and T114P in apolipoprotein B MRNA editing enzyme catalytic subunit 3F (APOBEC3F)] were selected. The results also showed that, protein-structure visualization suggested that these mutations may cause structural changes. The Kaplan-Meier analyses revealed that higher APT6V1A and APOBEC3F expression levels were significantly associated with poorer disease-free survival (DFS) and overall survival. Moreover, multivariate analysis identified high ATP6V1A mRNA expression as an independent risk factor for poor DFS. Two specific mutations that might affect taxane resistance were identified. Thus, these results suggest that breast cancer patients receiving taxanes who have high ATP6V1A or APOBEC3F expression levels may have shorter survival.

16.
Dig Dis Sci ; 67(8): 3683-3692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34751838

RESUMO

BACKGROUND: Conivaptan, a nonselective antagonist of vasopressin receptors V1a and V2, is the first drug of this class to be used for treating euvolemic and hypervolemic hyponatremia. Recently, increasing evidence supports the involvement of vasopressin in immune responses. AIMS: In this study, we investigated the effect of conivaptan on the modulation of CD4+ T cell homeostasis and the progression of experimental colitis. METHODS: The expression of the V1a receptor on CD4+ T cells was detected by immunofluorescence and western blot. The subset of isolated CD4+ T cells were examined after arginine vasopressin (AVP) incubation. CD4+ T cells were injected into DNBS-induced mice through the tail vein. The severity of colitis was evaluated according to weight, disease activity index (DAI), and morphological injury. Intracellular Ca2+ ([Ca2+]i) signaling in CD4+ T cells was measured using the Fluo-3 AM loading method. T-bet and IFN-γ mRNAs in the colon were detected by real-time polymerase chain reaction (qPCR). RESULTS: We found that CD4+ T cells expressed the V1a receptor. Activation of the V1a receptor significantly promoted the differentiation of CD4+ T cells into T helper 1 (Th1) cells. This process was blocked by conivaptan treatment. However, the activation of the V1a receptor did not evoke an increase in [Ca2+]i in CD4+ T cells. Notably, conivaptan markedly alleviated body weight loss, pathological damage, and expression of T-bet and IFN-γ in the colon of DNBS-treated mice. CONCLUSIONS: For the first time, we report that conivaptan attenuated colitis by inhibiting the differentiation of CD4+ T cells into Th1 cells. Mechanistically, the anti-inflammatory role of conivaptan is independent of [Ca2+]i.


Assuntos
Colite Ulcerativa , Colite , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Camundongos , Células Th1
17.
Arch Physiol Biochem ; 128(3): 830-835, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32141340

RESUMO

BACKGROUND: Oxidative stress, has been shown to play an important role in the pathophysiology of cardiac remodelling and heart failure. The aim of study is effect of arginine vasopressin (AVP) on apoptosis of cardiomyocyte via its receptors. MATERIALS AND METHODS: The cell viability effect of AVP in H9C2 cardiomyocytes was assayed using the MTT method. The transcription and translation level of apoptosis genes (Bax, Bcl-2, caspase-3) were discovered with qRT-PCR and western blotting. RESULTS: The results showed that vasopressin could reduce apoptosis in cardiomyocytes cell line through downregulation of caspase-3, BAX and upregulation of Bcl-2 (p < .001). Also, there was a decrease in anti-apoptosis effect of vasopressin when V1A and OTR receptors were blocked with their antagonists. DISCUSSION: These results suggest that activation of V1A and OTR receptors in H9C2 cells mediate protective effect of vasopressin via regulating apoptosis marker that lead to cell survival under conditions of stress oxidative.Key pointAVP may contribute to the improvement of heart ischaemia through its actions on V1A and OTR receptors.


Assuntos
Arginina Vasopressina , Receptores de Ocitocina , Arginina Vasopressina/metabolismo , Arginina Vasopressina/farmacologia , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Ocitocina/metabolismo , Ocitocina/farmacologia , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Vasopressinas/metabolismo , Vasopressinas/farmacologia , Proteína X Associada a bcl-2/metabolismo
18.
Comput Struct Biotechnol J ; 19: 5826-5833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765097

RESUMO

The neuropeptide vasopressin (VP) and its three G protein-coupled receptors (V1aR, V1bR and V2R) are of high interest in a wide array of drug discovery programs. V1aR is of particular importance due to its cardiovascular functions and diverse roles in the central nervous system. The structure-activity relationships underpinning ligand-receptor interactions remain however largely unclear, hindering rational drug design. This is not least due to the high structural flexibility of VP in its free as well as receptor-bound states. In this work, we developed a novel approach to reveal features of conformational selectivity upon VP-V1aR complex formation. We employed virtual screening strategies to probe VP's conformational space for transiently adopted structures that favor binding to V1aR. To this end, we dissected the VP conformational space into three sub-ensembles, each containing distinct structural sets for VP's three-residue C-terminal tail. We validated the computational results with experimental nuclear magnetic resonance (NMR) data and docked each sub-ensemble to V1aR. We observed that the conformation of VP's three-residue tail significantly modulated the complex dissociation constants. Solvent-exposed and proline trans-configured VP tail conformations bound to the receptor with three-fold enhanced affinities compared to compacted or cis-configured conformations. The solvent-exposed and more flexible structures facilitated unique interaction patterns between VP and V1aR transmembrane helices 3, 4, and 6 which led to high binding energies. The presented "virtual conformational space screening" approach, integrated with NMR spectroscopy, thus enabled identification and characterization of a conformational selection-type complex formation mechanism that confers novel perspectives on targeting the VP-V1aR interactions at the level of the encounter complex - an aspect that opens novel research avenues for understanding the functionality of the evolutionary selected conformational properties of VP, as well as guidance for ligand design strategies to provide more potent and selective VP analogues.

19.
Adv Exp Med Biol ; 1348: 273-309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34807425

RESUMO

Cutis laxa (CL) syndromes are a large and heterogeneous group of rare connective tissue disorders that share loose redundant skin as a hallmark clinical feature, which reflects dermal elastic fiber fragmentation. Both acquired and congenital-Mendelian- forms exist. Acquired forms are progressive and often preceded by inflammatory triggers in the skin, but may show systemic elastolysis. Mendelian forms are often pleiotropic in nature and classified upon systemic manifestations and mode of inheritance. Though impaired elastogenesis is a common denominator in all Mendelian forms of CL, the underlying gene defects are diverse and affect structural components of the elastic fiber or impair metabolic pathways interfering with cellular trafficking, proline synthesis, or mitochondrial functioning. In this chapter we provide a detailed overview of the clinical and molecular characteristics of the different cutis laxa types and review the latest insights on elastic fiber assembly and homeostasis from both human and animal studies.


Assuntos
Cútis Laxa , Animais , Cútis Laxa/genética , Tecido Elástico , Homeostase , Humanos , Redes e Vias Metabólicas , Síndrome
20.
Psychopharmacology (Berl) ; 238(9): 2393-2403, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33970290

RESUMO

RATIONALE: Arginine vasopressin (AVP) is a neuropeptide that modulates both physiological and emotional responses to threat. Until recently, drugs that target vasopressin receptors (V1a) in the human central nervous system were unavailable. The development of a novel V1a receptor antagonist, SRX246, permits the experimental validation of vasopressin's role in the regulation of anxiety and fear in humans. OBJECTIVES: Here, we examined the effects of SRX246 in a proof-of-concept translational paradigm of fear (phasic response to imminent threat) and anxiety (prolonged response to potential threat). METHODS: Healthy volunteers received both SRX246 and placebo in a randomized, double-blind, counter-balanced order separated by a 5-7-day wash-out period. Threat consisted of unpleasant electric shocks. The "NPU" threat test probed startle reactivity during predictable threat (i.e., fear-potentiated startle) and unpredictable threat (i.e., anxiety-potentiated startle). RESULTS: As predicted, SRX246 decreased anxiety-potentiated startle independent of fear-potentiated startle. CONCLUSIONS: As anxiety-potentiated startle is elevated in anxiety and trauma-associated disorders and decreased by traditional anxiolytics such as SSRIs and benzodiazepines, the V1a receptor is a promising novel treatment target.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Receptores de Vasopressinas , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Ansiedade/tratamento farmacológico , Azetidinas , Humanos , Modelos Teóricos , Reflexo de Sobressalto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA